

Wany, Papa Cambridge, com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2012	Syllabus 0581
abbre	eviations		ambridge.
cao	correct answe	r only	01
cso	correct solution	on only	20
dep	dependent		-0
t	follow throug	h after error	
SW	ignore subseq		
be	or equivalent		
SC	Special Case		
www	without wron	g working	
art	anything rour		
soi	seen or implie	•	

Q	u.	Answers	Mark	Part Marks
1	(a)	1134	3	M2 for $\frac{504}{12} \times (12 + 7 + 8)$ soi by answer of 1130 or B1 for 27 or 42 or 294 or 336 seen
	(b) (i)	468.72	3	M2 for $\frac{93}{100} \times 504$ oe soi by 468.7 or 469 or M1 for $\frac{7}{100} \times 504$ (implied by 35.28)
	(ii)	84	3	100 M2 for $\frac{64.68}{77} \times 100$ or M1 for (100 -23)% = 64.68
	(c)	262.19 cao	3	M2 for 250×1.016^3 oe implied by answer 262.2 or better
	(d)	12.5%	3	or M1 for 250×1.016^n oe $n > 2$ seen M2 for $\frac{324 - 288}{288} \times 100$ or M1 for $\frac{324}{288} \times 100 (112.5)$ or $\frac{36}{288} (0.125)$
2	(a)	10.9 or 10.92 www 4	4	M2 for $4^2 + 9^2 - 2 \times 4 \times 9 \times \cos 108$
				If M0 , M1 for correct implicit statement
				A1 for 119.249(which can be 3 www)
	(b) (i)	5.16 or 5.162 www 3	3	M2 for $9 \times \cos 55$ oe in correct triangle
				If M0 , B1 for 55 or 35 in correct position soi
	(ii)	(0)53	B2	SC1 for answer 233

www.xtrapapers.com

Γ	Page 3		Mark Scheme: Teache	sion Syllabus r	
			IGCSE – May/Jun	e 2012	0581 23
					Call
3	(a)	1 0.98	8(4) 0 -0.98(4) -1	B3	B2 for 4 correct, B1 for 3 correct
	(b)	9 point	ts plotted	P3ft	B2 for 7 or 8 points correct B1 for 5 or 6 points correct
		smooth	n curve	C1	Sion Syllabus 0581 B2 for 4 correct, B1 for 3 correct B2 for 7 or 8 points correct B1 for 5 or 6 points correct correct cubic shape through 8 or more points from - 2 to 2
	(c) (i)	<i>y</i> = 0.8	drawn	B1	Accept good freehand To make the three possible intersections (otherwise the line must be from -2 to 2)
	(ii)	-1.1 to	o −1.2, −0.4 to −0. 5, 1.55 to 1.65	1, 1, 1	
	(d)	correct 4 to 5.5	tangent drawn at $x = -1.5$	T1 B2	Allow slight daylight dep on T1 M1 for evidence rise/run with correct scales dep on T1
4	(a)	90		B 1	
	(b)	tan(AC 34.9(9)	$(B) = 7 \div 10$ oe)	M1 A1	Any longer method must reach equivalent stage
	(c)	same s	segment	B 1	Allow same arc oe
	(d) (i)	11.9 01	: 11.8(9) www 3	3	M2 for $\frac{7 \times \sin 77}{\sin 35}$
					or M1 for implicit form
	(ii)	38.6 (3	8.58 to 38.62) www 2	2	M1 for $0.5 \times 7 \times their (d)(i) \times sin(180 - 77 - 35)$ oe
					Allow 68.00 to 68.01 for 68
	(e)	8.69 of www 3	8.7(0) or 8.685 to 8.700 cao	3	M2 for $12.3 \times \left(\frac{10}{their \ 11.9}\right)^2$
					or M1 for $\left(\frac{10}{their \ 11.9}\right)^2$ or reciprocal seen
5	(a) (i)	2.8 cao)	1	accept 2 (h) 48, not 2.48
	(ii)	3.8 cac)	1	accept 3 (h) 48 not 3.48
	(iii)	1.8 cac)	1ft	ft their (a)(ii) -2 accept 1 (h) 48 and 1.48
	(b)	6		1	
	(c) (i)	9, 4, 4		2	B1 for 2 correct

						WWW.	ktrapaper	S.C
Page		cheme: Teache		sion	Syllabus	s S		
	IG	CSE – May/June	e 2012		0581		ac	
(ii)	1 2.5 3.5 4.5 5.5 7		M1	At least 5 co	orrect mid-val	ues seen	ambrid	
	$20 \times 1 + 25 \times 2.5$ their $9 \times 4.5 +$ their 4×7 (= 236)		M1	_	re x is in the co + $63 + 40.5 + 2$	orrect inter 22 + 28)	val	e.c.
	÷ 80		M1	Dependent	on second met	thod mark		
	2.95 cao		A1	Allow www	v 4			
(d)	Axes suitably numbered horizontal axis suitably area scale stated		1	e.g. 4 cm ² =	10			
	6 columns with correct	relative widths	1	no gaps, but	t condone reas	sonable fre	ehand	
	heights: 10 25, 18, <i>th</i> <i>their</i> 4 -	eir 9, their 4 - 2	1 1 1	if vertical heights	axis not labo	elled use	correct relati	ve
6 (a) (i)	(4x-7)(2x-1) = 1		M1	or $(4x - 7)$	(2x-1)-1=0	0 only		
	$8x^2 - 14x - 4x + 7$		B 1	allow $-18x$	and/or $+6 =$	0 or $= -6$)	
	$4x^2 - 9x + 3 = 0$		E 1		more line e.g. ors or omission		+6 = 0	
(ii)	$(x =) \frac{-(-9) \pm \sqrt{(-9)^2 - 4}}{2 \times 4}$	4(4)(3)	B2	B1 for $p = -$	$(-9)^2 - 4(4)(3)$ or - (-9) and $r = \frac{p + or - \sqrt{q}}{\sqrt{q}}$	$= 2 \times 4$ or b	n $(\sqrt{33})$ better as long	as
	(x =) 0.41, 1.84 cao		B1,B1	After B0B0	<i>r</i> , SC1 for 0.4 (.843(070)		29)	
(iii)	0.36 or 0.3720 to 0.37	24 or 0.37	B1ft	ft their valu	e to give posit	tive $(4x - 7)$	<i>(</i>)	
(b) (i)	(x-4)(x+4)		B 1					
(ii)	(2x+3)(x+4) + (x+4) oe	$0) = 2(x^2 - 16)$	M2	or			over $(x^2 - 16)$	
				$(2x+3)(x^2)$	-16) + (x + 40)	y(x-4) =	$2(x-4)(x^2-1)$	16)

Condone sign slips

B1

A1

 $2x^2 + 8x + 3x + 12$ or

 $2x^3 + 3x^2 - 32x - 48$

x = -7 www 4

		www.xtrapapers
Page 5 M	ark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – May/June 2012	0581

7		In any part of part (a) all marks are in 0 out of 3	ndepend	lent but mention of a second transform
	(a) (i)	Rotation (centre/about) origin (<i>O</i>) (0,0) 180°	1 1 1	ent but mention of a second transform accept R SC3 for all of enlargement, $sf - 1$, (0, 0)
	(ii)	Enlargement (centre/about) (0,-3) SF - 3	1 1 1	accept E
	(iii)	Enlargement (centre/about) (0, 6) SF $\frac{1}{3}$	1 1 1	accept E
	(b) (i)	image at (-4, -2) (-2, -2) and (-1, 0)	2	SC1 for translation by $\begin{pmatrix} -4\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -5 \end{pmatrix}$, $k \neq 0$
	(ii)	image at (-2, 3) (-4, 3) and (-5, 5)	2	SC1 for reflection in $y = -1$
	(c) (i)	image at (0, 3) (4, 3) and (6, 5)	2	SC1 for stretch sf 2 with x-axis invariant ie at $(0,6)$ $(2,6)$ $(3,10)$
	(ii)	$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} ft$	2 ft	ft their stretch factor only SC1 for correct left hand column ft or $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ ft
8	(a)	2 4 6 8	1	
	(b)	3	1	
	(c) (i)	(x-4)(x-9)	2	SC1 any other $(x + a)(x + b)$ where $a \times b = 36$ or $a + b = -13$
	(ii)	4 9	B1 ft	ft or can recover
	(d) g			
		$ \begin{array}{c} $	2	Must have all 9 numbers on diagram and no extras SC1 for 5 or more correct elements
	(e) (i)	\varnothing or { } cao	1	
	(ii)	∉ cao	1	
	(iii)	\cup cao	1	

Page 6		Mark Scheme: Teachers' version			Syllabus r
		IGCSE – May/Ju			0581 230
9 (a) (i)	14		1		Shribrio
(ii)	13 - 2x		2	M1 for 7-2	Syllabus r 0581 0581 2(x-3) 0
(iii)	$25x^2 -$	8 final answer	1		
(b)	$\frac{7-x}{2}$ of	De la	2	or $x = 7 - 2$	$=7-y, x = \frac{7-y}{2} \text{ oe}$ 2y, 2y = 7-x oe from answer
(c)	$9x^2 + 3$	0 <i>x</i> + 17	3	M1 for $(3x)$ B1 for $9x^2$	$(x+5)^2 - 8$ seen + $30x + 25$
(d)	7 cao		3		(3x+5)+5 = 83 or better (3x+5)+5 oe
(e)	$x < -\frac{3}{8}$	oe cao	3		(x+5) < 7 - 2x oe (x+5) < 7 - 2x = 0 (x+5) < 7 - 2x = 0
10 (a)	2030 01	· 2040 or 2034 to 2036. ()	2	$(V=)\frac{1}{3}\times\pi$	$\times 9^2 \times 24$
				Accept 648	π for 2 marks if final answer
(b)	(upper 1	radius =) 3	B 1	accept 9×-	8/24 oe
	(vol cut	$t \text{ off} =) \frac{1}{3} \times \pi \times their 3^2 \times 8$	M1	(= 75.36 to	75.41) their r must be less than 9
	<i>their</i> (a) – their 75.39	M1 dep	[alternate n	method M1 for ratio sides 1:3 M1 ratio vols 1 : 27 M1 <i>their</i> (a) \times 26 \div 27]
	1958 to	1964.()	E 1	-	es B1 M2 or M3 figure after decimal point if 1960
(c)	1960 =	$5 \times \pi \times r^2 \times 15$ soi	M1		
	$r^2 = 19$	$60 \div \pi \div 15 \div 5$	M1	implied by 8	8.318
	\sqrt{their}	8.318	M1	dep on M1	
	2.88 to	2.89	E1	SC2 for $5 \times$	$\pi \times 2.9^2 \times 15 = 1980$ to 1982