CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0581 MATHEMATICS

0581/31

Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa	ge 2	Mark Scheme	Syllabus	V
		IGCSE – October/November 2012	0581	20
Abbrevi	ations			Call
cao	correct answ	ver only	,	Dric
cso	correct solu	tion only		8
dep	dependent			2 co
ft	follow throu	igh after error		On
isw	ignore subse	equent working		1
oe	or equivaler	nt		
CC	Canadal Can			

Abbreviations

oe SCSpecial Case

without wrong working www

Qu.	Answers	Mark	Part Marks
1	(a) (i) Any two multiples of 10	1	
	(ii) 30	2	B1 for any other common multiple of 10 and
	(b) (i) 6 or 9 or 6 and 9 cao	1	15 ie 30 <i>k</i>
	(ii) 27 cao	1	
	(iii) 23 cao	1	
	(c) (i) Example of odd square number	1	
	(ii) Example of odd sum of primes	1	
	(d) 4^{-2} , 8^0 , $\sqrt{169}$, 2^5	2	B1 for only 1 out of order or for three seen correctly evaluated
2	(a) (i) 12.5(0)	1	
	(ii) $\frac{7}{19}$	2	B1 for $\frac{175}{475}$ oe seen
	(iii) 133.75	2	M1 for $\frac{7}{20} \times 475$
	(b) 503.5(0)	2	M1 for 106 ÷ 100 × 475 Or 475 + (6 ÷ 100 × 475)
	(c) 28.56	3	M1 for 350 × 1.04 ² oe dep M1 for 'their 378.56' – 350
			Or M1 for (350 × 0.04) (imp by 14) and (350 + 'their 14') × 0.04 (imp by 14.56) dep M1 'their 14' + 'their 14.56'

Page 3	Mark Scheme	Syllabus	1 S
	IGCSE – October/November 2012	0581	200

				ī	2
3	(a)	(i)	0	1	My
		(ii)	1	1	ambridge
		(iii)	1.6	3	M1 for $(0 \times 6) + 1 \times 2 + 2 \times 3 + 3 \times 1 + 4 \times 2 + 5 \times 1$ or better dep M1 for 'their 24' \div 15
		(iv)	Bar chart with - horizontal axis correctly labelled - and vertical axis correctly scaled - and bars of correct height and equal width, - and with equal gaps or no gaps	4	B1 for horizontal axis labelled correctly B1 for linear vertical scale to at least 5 B2 for all bars correct height and equal width with equal or no gaps Or B1 for unequal widths or at least four bars correct height and equal width
	(b)	(i)	$\frac{5}{15}$ or $\frac{1}{3}$	1	
		(ii)	$\frac{11}{15}$	1	
		(iii)	$\frac{6}{15}$ or $\frac{2}{5}$	1	
4	(a)	(i)	70°	1	
		(ii)	isosceles	1	
		(iii)	40° Corresponding (to angle <i>CBD</i>)	1 1	dep on 40° (accept longer reasons)
		(iv)	similar	1	
	(b)	(i)	305°	1	
		(ii)	(Angle between) tangent (and) radius	1	
		(iii)	125° or 235°	1	
		(iv)	kite	1	

Page 4	Mark Scheme	Syllabus	.0
	IGCSE – October/November 2012	0581	25

5	(a)	$(CD^2 =) (32 - 20)^2 + 15^2$ oe $(CD =) \sqrt{369} = 19.20$ to 19.21	M1 A1	A0 for 19.2 alone.
	(b)	3017	2	A0 for 19.2 alone. M1 for $20 + 15 + 32 + 19.2(1)$ [implied by 86.2(1)] Or M1 for $(20 \times 35) + (15 \times 35) + (32 \times 35) + (19.2(1) \times 35)$
	(c)	390	2	M1 for $(20 + 32) \times 15 \div 2$ oe
	(d)	273	2ft	M1 for 'their (c)' × 7 ÷ 10
	(e)	(i) trapezium constructed $BC = 5$ cm, $AD = 8$ cm Both 90° to AB	2	B1 for <i>C</i> or <i>D</i> correctly positioned
		(ii) 49 – 53°	1ft	
		(iii) 34.4 – 36.4 m	1ft	
6	(a)	9 16 25 7 10 13	2 2	B1 for 2 correct B1 for 2 correct, or difference of 3 between
	(b)	square	1	diagrams 4 and 5
	(c)	(i) 22	1	
		(ii) $3n-2$ oe final answer	2	B1 for $3n \pm j$ seen Or $kn - 2$, where $k \neq 0$
	(d)	(i) 20	2	ft M1 for 'their (c)(ii)' = 58 or better, seen
		(ii) 400	1ft	'their (d)(i)' ² (must be evaluated)

Page 5	Mark Scheme	Syllabus	13	
	IGCSE – October/November 2012	0581	aps.	

			S
7	(a) (i) 140	2	M1 for $80 + 5 \times 12$ or better M1 for $(230 - 80) \div 5$ or 150 seen
	(ii) 30	2	M1 for (230 – 80) ÷ 5 or 150 seen
	(iii) $\frac{C-80}{5}$ or $\frac{C}{5}-16$ or $\frac{80-C}{-5}$ final answer	2	M1 for $C - 80 = 5n$ Or M1 for $\frac{C}{5} = \frac{80}{5} + \frac{5n}{5}$ or better
	(b) $9x + 2$ final answer	2	M1 for $9x + k$ or $mx + 2$ or $6x + 8$ or $-6 + 3x$ or $9x + 2$ spoilt
	(c) $x = 3, y = 4$	3	M1 for correct method to eliminate one variable
			A1 $x = 3$ A1 $y = 4$
8	(a) (i) 165 000	2	M1 for figs 165 or $55 \times 40 \times 75$ seen
	(ii) 165	1ft	'their (a)(i)' ÷ 1000
	(b) (i) 10 minutes 24 seconds	2	M1 for 260 ÷ 25 or 10.4 seen or 624 seen
	(ii) 255	1	
	(c) 30	2	M1 for $\sqrt[3]{27000}$
9	(a) y-values -2, 4, 8, 4, -2	3	B2 for 3 or 4 correct B1 for 2 correct
	(b) 10 correctly plotted points	3ft	B2ft for 8 or 9 points B1ft for 6 or 7 points
	Smooth curve through 10 correct points and correct shape.	1	Curve must pass above $y = 10$
	(c) $x = 1.5$ oe	1	
	(d) (i) Line $y = 6$ drawn	1	
	(ii) $x = 3.5 \text{ to } 3.7$ x = -0.7 to -0.5	1ft 1ft	Ft their curve and their line drawn

Page 6	Mark Scheme	Syllabus	· 20 T
	IGCSE – October/November 2012	0581	St.

10	(a) (i) Rotation,	3	B1 for each
	90° anticlockwise oe,		Tage of the same o
	(centre) (0, 0), origin, O		
	(ii) Enlargement,	3	B1 for each
	(scale factor) 2, (centre) (-1, 1)		
	(b) (i) correct translation	2	B1 for 3 right or 4 down
	(ii) correct reflection	2	B1 for reflection in any line parallel to <i>x</i> -axis or for correct reflection in $x = -1$