MARK SCHEME for the October/November 2013 series

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Www.xtrapapers.com

F	Page 2	Mark Scheme	Syllabus Syllabus	
		IGCSE – October/November 2013	0581 23	
bbre	eviations		Syllabus 0581 0581 0581 0581 0581 0581 0580 0581 0580 0580	
10	correct answer	only	01	
0	correct solution	only	30	
ep	dependent			
•	follow through	after error		0
W	ignore subsequ			
е	or equivalent	C		
С	Special Case			
ww	without wrong	working		
t	anything round			
oi	seen or implied			

.

м.

Qu	Answers	Mark	Part Marks
1	(a) (i) $\frac{2}{5}$ cao	1	
	(ii) 3:2 cao	1	
	(b) (i) 1.22	2	M1 for 86.38 – 28 × 1.56
	(ii) 1.3 [0] nfww	3	M2 for 1.56 ÷ 1.2 oe or M1 for 1.56 = 120% soi
	(c) 33.6[0]	2	M1 for (667 – 314.2) ÷ 10.5 oe
2	(a) 3 correct lines on grid (0, 0) to (40, 5) (40, 5) to (100, 5) (100, 5) to (120, 0)	2	Allow good freehand SC1FT for 2 lines correct, FT from an incorrect line
	(b) $\frac{5}{40}$ oe	1	
	(c) 3.75	4	M2 for $0.5 \times 40 \times 5 + 60 \times 5 + 0.5 \times 20 \times 5$ oe [450] or M1 for evidence of a relevant area = distance and M1dep <i>their</i> area (or distance) \div 120

© Cambridge International Examinations 2013

www.xtrapapers.com Syllabus 0581 Page 3 **Mark Scheme** IGCSE – October/November 2013

		IGCSE – October/Nov	ember 2	2013 0581 230
Qu		Answers	Mark	Part Marks
3	(a)	(i) 204 or 204.2 to 204.23	2	Part MarksM1 for $\pi \times 5 \times 13$ implied by answer in range204.1 to 204.3M2 for $\sqrt{12^2 + 5^2}$ or states 5, 12, 12 triangle
		(ii) 12 cao	3	M2 for $\sqrt{13^2 - 5^2}$ or states 5, 12, 13 triangle or M1 for $13^2 = 5^2 + h^2$ or better
		(iii) 314 or 314.1 to 314.2	2	M1 for $\frac{1}{3} \times \pi \times 5^2 \times their$ (a) (ii) implied by answer in range 314 to 314.3
		(iv) 3.14×10^{-4} or 3.141 to 3.142×10^{-4}	2FT	FT <i>their</i> (a) (iii) $\div 100^3$ correctly evaluated and given in standard form to 3 sig figs or better or M1 FT for <i>their</i> (a) (iii) $\div 100^3$ or SC1 for conversion of <i>their</i> m ³ into standard form only if negative power
	(b)	138 or 138.3 to 138.5	4	M3 for $\frac{10\pi}{26\pi} \times 360$ oe or
				$\frac{\pi \times 5 \times 13 \text{ or their (a)(i)}}{\pi \times 13^2} \times 360 \text{ oe}$
				or M2 for a correct fraction without \times 360 or M1 for $\pi \times 2 \times 13$ oe [81.6 to 81.8] seen or $\pi \times 13^2$ oe [530.6 to 531.2] seen
4	(a)	45.[0] or 45.01 to 45.02 nfww	4	M2 for $55^2 + 70^2 - 2.55.70 \cos 40$ or M1 for correct implicit equation A1 for 2026
	(b)	84.9 or 84.90 to 84.92	4	B1 for angle BDC = 40 soi M2 for $\frac{70 \sin (their 40)}{\sin 32}$
				or M1 for correct implicit equation
	(c)	(i) 4060 or 4063 to 4064 nfww	3	M2 for $\frac{1}{2} (55 \times 70 \sin 40) + \frac{1}{2}$
				$(70 \times their(b)\sin(180 - their40 - 32))$ oe or M1 for correct method for one of the triangle areas
		(ii) 1020 or 1015 to 1016	2FT	FT <i>their</i> (c) (i) \div 4 oe correctly evaluated or M1 <i>their</i> (c) (i) \div figs 4 oe
	(d)	35.4 or 35.35 nfww	2	M1 for $\sin 40 = \frac{distance}{55}$ or better
				or for $\frac{1}{2}$ (55 × 70 sin 40) = (70 × distance) ÷ 2

© Cambridge International Examinations 2013

PA CAMBRIDGE

www.xtrapapers.com

Page 4	Mark Scheme	Syllabus Syllabus
	IGCSE – October/November 2013	0581

			IGCSE – October/Nov	/ember 2	2013 0581 73
Qu			Answers	Mark	Part Marks
5	(a)	(i)	Correct reflection to (4, 8) (2, 9) (4, 9)	2	20130581Part MarksSC1 for reflection in line $x = 5$ or reflection in $y = k$ Ignore additional triangles
		(ii)	Correct rotation to (4, 2), (4, 3) (6, 3)	2	SC1 for rotation 180° with incorrect centre Ignore additional triangles
		(iii)	Shear, <i>x</i> -axis oe invariant, [factor] 2	3	B1 each (independent)
		(iv)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	2FT	FT <i>their</i> shear factor B1FT for one correct column or row in 2 by 2 matrix but not identity matrix or SC1FT for $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$
	(b)	(i)	$\mathbf{p} + 2\mathbf{s}$ final answer	2	M1 for recognising \overrightarrow{OQ} as position vector soi
		(ii)	$\mathbf{s} + \frac{1}{2}\mathbf{p}$ final answer	2	B1 for $\mathbf{s} + k\mathbf{p}$ or $k\mathbf{s} + \frac{1}{2}\mathbf{p}$ or correct route $(k \neq 0)$
		(c)	parallel and $OQ = 2SR$ oe	1	
6	(a)	(i)	1.4 to 1.6	1	
		(ii)	1.15 to 1.25	1	
		(iii)	- 1	1	
		(iv)	- 2.25 to - 2.1 - 0.9 to - 0.75 2.2 to 2.35	3	B2 for 2 correct or B1 for one correct or B1 for $y = x$ drawn ruled to cut curve 3 times
	(b)	(i)	- 15	2	B1 for $[h(3) =]$ 8 seen or M1 for $1 - 2(x^2 - 1)$ or better
		(ii)	$\frac{1-x}{2}$ or $\frac{1}{2} - \frac{x}{2}$ oe final answer	2	M1 for $2x = 1 - y$ or $x = 1 - 2y$ or better
		(iii)	-2,2	3	M1 for $x^2 - 1 = 3$ or better B1 for one answer
		(iv)	$\frac{1}{8}$ oe nfww	3	M2 for $8x = 1$ or $8x - 1 = 0$ or M1 for $1 - 2(3x) = 2x$

PA CAMBRIDGE

ww.xtrapapers.com

Page 5	Mark Scheme	Syllabus	· A
	IGCSE – October/November 2013		102

l		Answers	Mark	Part Marks
((a) 24.	7 or 24.66 to 24.67	4	Oct 1Part MarksM1 for midpoints soi (condone 1 error or omission) (5, 15, 25, 35, 45, 55) and M1 for use of $\sum fx$ with x in correct interval including both boundaries (condone 1 further error or omission) and M1 (dependent on second M) for $\sum fx \div 120$
((b) (i)	50, 90, 114	2	B1 for 2 correct
	(ii)	Correct curve or ruled polygon	3	Ignore section to left of $t = 10$ B1 for 6 correct horizontal plots and B1FT for 6 correct vertical plots If 0 scored SC1 for 5 out of 6 correct plots and B1FT for curve or polygon through at least 5 of <i>their</i> points dep on an increasing curve/polygon that reaches 120 vertically
	(iii)) 21.5 to 23 15 to 16.5 24 to 26	4	B1 B1 B2 or B1 for 72 or 72.6 seen
((c) (i)	50, 30	2	B1 each
	(ii)	Correct histogram	3FT	B1 for blocks of widths $0 - 20$, $30 - 60$ (no gaps) B1FT for block of height 2.5 or <i>their</i> $50 \div 20$ and B1FT for block of height 1 or <i>their</i> $30 \div 30$

					*	ww.xtrapapers.com
F	Page 6	Mark Scheme			Syllabus	A.
		IGCSE – October/N	ovember 2	2013	0581	103
				1		C.
Qu		Answers	Mark	Part Marks		Abria.
		$(1)^2 (1)^{-1} (1)^$. (11	$()^2$

8	(a) $\sqrt{(-11)^2 - 4(8)(-11)}$ or better	B1	Seen anywhere or for $\left(x - \frac{11}{16}\right)^2$
	p = -(-11), r = 2(8) or better	B 1	Must be in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$
			or B1 for $\sqrt{\frac{11}{8} + \left(\frac{11}{16}\right)^2} + \frac{11}{16}$
	– 0.67, 2.05 final answers	B1B1	SC1 for - 0.7 or - 0.672 to - 0.671 and 2.0 or 2.046 to 2.047 or answers 0.67 and - 2.05
	(b) 132	3	M1 for $y = k\sqrt{x}$ oe or $\sqrt{x = ky}$ oe A1 for $k = 6$ oe or better or for $k = 0.1666$ to 0.167 [k = 6 implies M1A1] oe
	(c) 20 with supporting algebraic working	6	B2 for $\frac{x}{2.5} + \frac{x - 14.5}{0.5} = 19$ oe or B1 for $\frac{x}{2.5}$ or $\frac{x - 14.5}{.5}$
			M1dep on B2 for first completed correct move to clear both fractions M1 for second completed correct move to collect terms in x to a single term M1 for third completed correct move to collect numeric term[s] leading to $ax = b$ SC1 for 20 with no algebraic working
9	(a) $y = 2$ oe y = 2x oe	1 2	M1 for $y = kx$, $k \neq 0$ or gradient 2 soi
	$y = -\frac{1}{2}x + 5$ oe	2	MI for $y = kx$, $k \neq 0^{-1}$ of gradient 2 sol M1 for gradient $-\frac{1}{2}$ soi or $y = kx + 5$ oe or $x + 2y = k$ $k \neq 0$ oe If L^2 and L^3 both correct but interchanged then SC3
	(b) $y \ge 2$ oe $y \le 2x$ oe		
	$y \le -\frac{1}{2}x + 5 $ oe	3	B1 for each correct inequality, allow in any order After 0 scored, SC1 for all inequalities reversed
	(c) (i) 4 [bushes], 3 [trees]	2	M1 for any correct trial using integer coordinates in region or $30x + 200y = 720$ seen
	(ii) 2 [bushes], 4 [trees]	2	M1 for any correct trial using integer coordinates in region
	860	1	

© Cambridge International Examinations 2013

PA CAMBRIDGE

						Syllabus 0581 r ng a value of <i>n</i> in $\frac{n(n+1)}{r}$
<u> </u>	Page	7	Mark Schen IGCSE – October/Nov		2013	Syllabus 0581
· L						acc.
Qu			Answers	Mark	Part Mark	s not
10	(a)	(i)	1 + 2 + 3 + 4 + 5 = 15	1		Sec.
			Correct substitution equating to sum e.g. $\frac{2(2+1)}{k} = 3$ and $k = 2$ stated with no errors seen	2	e.g. $\frac{2(2+1)}{k}$	$\frac{1}{k} = 3$ if if ication using $k = 2$
		(iii)	1830	1		
		(iv)	30	2	M1 for $\frac{n(n)}{n}$	$\left(\frac{n+1}{2}\right) = 465$ or better
		(v)	n-8	1		
	(b)	(i)	225, 15	2	B1 either	
		(ii)	$\frac{n^2(n+1)^2}{4}$ oe	1		
		(iii)	36100	2	M1 for $\frac{19^2}{2}$	$\frac{4^2(19+1)^2}{4}$ oe or 190^2