

MARK SCHEME for the May/June 2014 series

0581 MATHEMATICS

0581/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Sullabus
Syllabus y
0581
emphi
1.00
- C
-On
_

oe

SC

or equivalent Special Case not from wrong working seen or implied nfww

soi

Question	Answers	Mark	Part Marks
1	1.37	2	B1 for 0.866 or $\frac{\sqrt{3}}{2}$ or 0.5 or $\frac{1}{2}$ or B1 for 1.366 as final answer
2	$18\frac{1}{18}$	2	M1 for $\frac{2}{36} + \frac{36}{2}$ or better
3	30	2	M1 for $n - 8 = 22$ or $\frac{n}{2} = 15$
4 (a)	$\frac{5 \times 2}{20}$	1	
(b)	$0.5 \text{ or } \frac{1}{2} \text{ cao}$	1	
5	$0.5^3 \ 0.5^2 \ 0.5 \ \sqrt[3]{0.5}$	2	B1 for 0.25, 0.125 and 0.793 seen or for three in correct order
6	1.6[0]	3	M1 for 800 × 1.5 and M1 for <i>their</i> 1200 ÷ 750
7	$4\pm\sqrt{y-6}$	3	M1 for <i>their</i> 6 moved correctly M1 for <i>their</i> $$ taken correctly M1 for <i>their</i> 4 moved correctly
8	$\frac{2}{x(x+1)}$	3	B1 for common denominator $x(x+1)$ seen M1 for $2(x+1) - 2x$ oe or better
9 (a)	119	3	M2 for $18 \times 6 + 11$ oe or B1 for 18 or 11 or 108
(b)	[0] 1 [00] pm cao	1	
10 (a)	(a+b)(x+y)	2	B1 for $a(x + y) + b(x + y)$ or $x(a + b) + y(a + b)$
(b)	(x-1)(3x-2)	2	B1 for $(x-1)(3(x-1)+1)$ If B0 then SC1 for $(x+a)(3x+b)$ where $3a+b=-5$ or $ab = 2$ or $3(x-1)(x-\frac{2}{3})$

www.xtrapapers.com

Page	e 3 Mark Sc	heme	Syllabus
	IGCSE – May	/June 2014	0581
11	113.9 to 114.0	4	Syllabus r 0581 0581 M2 for [cos =] $\frac{8^2 + 2^2 - 9^2}{2 \times 8 \times 2}$ or M1 for $9^2 = 8^2 + 2^2 - 2 \times 8 \times 2 \times \cos x$ A1 for -0.406 or -0.4063 to -0.4062 or $-\frac{13}{32}$ If 0 scored SC2 for 54 3[1 - 1 or 11 7 or 11 71 to
			11.72
			SC1 for $[\cos =] \frac{9^2 + 2^2 - 8^2}{2 \times 9 \times 2}$ or $[\cos =] \frac{9^2 + 8^2 - 2^2}{2 \times 9 \times 8}$
12 (a)	2×10^{10}	2	B1 for 20×10^9 or 20 000 000 000
(b)	1.25×10^{-1}	2	B1 for 0.125 oe
13 (a)	32	2	B1 for $AOC = 116$
(b)	35	2	B1 for $CDA = 122$
14	$y = \frac{2}{3}x - 2 \text{oe}$	4	B1 for (9, 4) and
			M2 for $y = kx - 2$ ($k \neq 0$) or $y = \frac{2}{3}x + k$ ($k \neq 0$) or 2
			$\frac{2}{3}x - 2$ or M1 for $y = \frac{2}{3}x$ or $\frac{2}{3}x + k$ ($k \neq 0$)
15	[0], 1, 2, 3	4	M1 for moving the 5 correctly M1 for collecting <i>their</i> terms A1 for a correct inequality for $x \in [0 \le] x < 4$
16 (a)	8	2	B1 for 2 ¹² or 4096
(b)	$2q^{\frac{3}{2}}$	3	B2 for $kq^{\frac{3}{2}}$ as the answer or
17 (a)	correct working	2	B1 for $2q^2$ and B1 for $q^{\frac{1}{2}}$ oe nfww M1 for 1 holiday = 5 or $360 \div 72 = 5$
17 (u)			and B1 for 24 × 5 [= 120] or
(b)	6 nfww	3	M2 for $\frac{24}{72} \times 360$ [=120] oe M1 for 150 + 120 + x + 2x = 360 oe
18 (a)	correct working	2	A1 for 30 identified as the required angle B2 for $\sqrt[3]{\frac{1}{8}} = \frac{1}{2}$ or $\sqrt[3]{8} = 2$ AND $\frac{10}{2} = 5$ oe and $\frac{4}{2} = 2$
			oe or
			B1 for $\sqrt[3]{\frac{1}{8}}$ or $\sqrt[3]{8}$ or $8 = 2^3$ or $\frac{1}{8} = (\frac{1}{2})^3$

PA CAMBRIDGE

	www.xtrapapers.com
--	--------------------

Page	ge 4 Mark Scheme Syllabus IGCSE – May/June 2014 0581		Syllabus 0581	
(b)	147 of	r 146.5 to 146.6	4	NJ SyllabusNJ SyllabusM3 for $\frac{7}{8} \times \frac{1}{3} \times \pi \times 4^2 \times 10$ orM1 for $\frac{1}{3} \times \pi \times 4^2 \times 10$ andM1 for $\frac{1}{3} \times \pi \times 2^2 \times 5$ andM1 for subtracting <i>their</i> volumes
19	1.38 0	r 1.39 or 1.384 to 1.389	7	M3 [Area $\Delta =$] $\frac{1}{2} \times 8 \cos 60 \times 8 \sin 60$ or M1 for [$AE =$] $8 \cos 60$ and M1 for [ED] = $8 \sin 60$ and M1 for Area sector $\frac{30}{360} \times \pi \times 8^2$ and M1 for Area rectangle = $8 \times 8 \cos 60$ or 8×4 M1 for their $32 - (their \ 13.86 + their \ 16.76)$ or better