

MARK SCHEME for the May/June 2014 series

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus Syllabus
	IGCSE – May/June 2014	0581 73
oreviations		and the
correct	answer only	10
depende	ent	
follow t	hrough after error	
ignore s	ubsequent working	
or equiv	alent	
Special	Case	
w not from	n wrong working	
seen or	implied	

Qu		Answers	Mark	Part Marks
1	(a) (i)	$\begin{pmatrix} 6 & 4 \\ -2 & 2 \end{pmatrix}$	1	
	(ii)	Not possible	1	
	(iii)	$\begin{pmatrix} 6 & 4 \\ -2 & 2 \end{pmatrix}$	2	B1 for one row or column correct
	(iv)	$\frac{1}{5} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} \text{ oe isw}$	2	B1 for $\frac{1}{5} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ seen or $k \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$ seen
	(b)	1 column in C and 2 rows in D	1	Any clear indication
	(c)	Enlargement [Factor] 2 [Centre] (0, 0) oe	1 1 1	
2	(a)	8	2	M1 for 12 ÷ 1.5 oe
	(b)	[Distance =] 36 <i>their</i> 36 ÷ 3 [= 12] oe	B1 M1	
	(c)	200	2	M1 for 12 × 1000 ÷ 60 oe e.g. 36 000 ÷ 180
	(d)	Horizontal line at 36 to 13 45 (<i>their</i> 13 45, 36) joined to (16 42, 0)	1 1FT	
3	(a)	62 705	2	M1 for 75246 ÷ 6 soi by 12541 or 75246 × 5
	(b)	10.9 or 10.88	3	M2 for $\frac{(150675 - 135890)}{135890} \times 100$ oe or M1 for correct fraction soi by 0.1088
				or $\frac{150675}{135890} \times 100$ soi by 110.88

PA CAMBRIDGE

Page 3	Mark Scheme	Syllabus Syllabus	
	IGCSE – May/June 2014	0581	

Qu		Answers	Mark	Part Marks
	(c)	127 000	3	M2 for 135 890 ÷ 1.07 oe or M1 for 135 890 associated with 107%
	(d) (i)	59112 to 59113 or 59100 or 59110	3	M2 for $\pi \times 21 \times (30^2 - 2^2)$ oe
		or 59119 to 59120 or 59100 nfww		Or M1 for $\pi \times 21 \times 30^2$ or $\pi \times 21 \times 2^2$
	(ii)	(a) 0.0125	1	
		(b) 7580 or 7582 or 7581 or 7583 nfww	4	M1 for 21 × 29.7 × <i>their</i> 0.0125 [=7.796 or 7.8[0]] and M1 for <i>their</i> (d)(i) ÷ (21 × 29.7 × <i>their</i> 0.0125) A1 for 7580 to 7583.2 (non integer) If 0 then SC1 for <i>their</i> (d)(i) ÷ (21 × 29.7 × 0.125)
4	(a)	$4 - x ext{ correctly placed} \\5 - x ext{ correctly placed} \\7 ext{ correctly placed}$	1 1 1	SC3 for 1, 2 and 7 all correctly placed instead of expressions in x
	(b)	4 + 11 + (6 - x) + x + 9 + (4 - x) + (5 - x) + 7 = 40 oe	M1	FT from their Venn diagram, condone omission of one subset
		46 - 2x = 40 nfww	A1	Must be in the form $a + bx = c$, ie each side simplified, or better
		<i>x</i> = 3	B 1	
	(c) (i)	$\frac{9}{40}$ or 0.225 or 22.5%	1	ISW cancelling or conversion after correct answer seen
	(ii)	2	1FT	FT from their Venn diagram and their x provided $n(B \cap P \cap T') \neq 5$
	(iii)	15	1FT	FT from their Venn diagram
	(iv)	25	1FT	FT from their Venn diagram
	(v)	4	1	
	(d)	Correct region shaded.	1	

Page 4	Mark Scheme	Syllabus
	IGCSE – May/June 2014	0581

Qu		Answers	Mark	Part Marks
5	(a)	[0]44 to [0]48	1	ale.
	(b)	12.6 to 13.2	2	B1 for 8.4 to 8.8 seen
	(c)	340	1	
	(d)	1:150000	2	M1 for × 100 000 soi
	(e)	Arcs for perp bisector of SL	1	Two pairs of correct arcs
		Ruled perp bisector of SL	1	Within tolerance of overlay
		Arcs for bisector of angle <i>PSL</i>	1	Marks on <i>PS</i> and <i>SL</i> plus one pair of correct arcs
		Ruled bisector of angle PSL	1	Within tolerance of overlay
		B marked within accuracy	1	Within tolerance of overlay Dep on two correct bisectors drawn
	(f)	3.375	2	M1 for 1.5×1.5^2 or $(2/3)^2$ seen
6	(a) (i)	0.6 oe	2	M1 for 0.2 + 0.4
	(ii)	1500	1	
	(iii)	0.03 oe	2	M1 for 0.1 × 0.3
	(b)	$\frac{112}{132}$ oe $\frac{28}{33} = 0.848[4]$	3	M2 for $1 - \frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{5}{11} + \frac{5}{12} \times \frac{7}{11} + \frac{7}{12} \times \frac{6}{11}$ or $\frac{7}{12} + \frac{5}{12} \times \frac{7}{11}$ or M1 for addition of any two of $\frac{7}{12} \times \frac{5}{11}, \frac{5}{12} \times \frac{7}{11}, \frac{7}{12} \times \frac{6}{11}$ or sum of 3 products with an error in the numerator of one product or for $\frac{5}{12} \times \frac{4}{11}$ identified

Page 5	Mark Scheme	Syllabus r
	IGCSE – May/June 2014	0581

· · · · · ·	Co.					
Qu		Answers	Mark	Part Marks		
7	(a) (i)	Image: (-4, -3), (-4, -1), (-3, -1)	2	SC1 for translation $\begin{pmatrix} -5\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -4 \end{pmatrix}$		
	(ii)	Image: (1, -1), (3, -1), (3, -2)	2	SC1 for rotation about the origin but 90° anticlockwise		
	(b) (i)	Image: (2, 1), (2, 3), (4, 3)	3	B2 for 2 correct vertices plotted		
				or SC2 for 3 vertices shown in working		
				or SC1 for 2 vertices shown in working		
				$\mathbf{M1} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 2 \\ 1 & 3 & 3 \end{pmatrix}$		
	(ii)	Stretch	1			
		Invariant line <i>y</i> -axis oe	1	Accept $x = 0$, stays the same		
8	(a)	2.125 and 2.375	2	B1 for one correct value		
	(b)	Correct curve	B4	B3FT for 11 correct plots		
				B2FT for 9 or 10 correct plots		
				B1FT for 7 or 8 correct plots		
	(c)	Ruled tangent at $x = 2$	B 1	No daylight at $x = 2$. Consider point of contact as midpoint between two vertices of daylight, this must be between $x = 1.8$		
				and 2.2		
		Gradient from 7.8 to 10.2	2	Dep on B1 awarded Allow integer/integer or a mixed number if within range		
				or M1 dep for (change in y) \div (change in x) Demonstrated areas of the set of th		
				attempt at a tangent at <u>any</u> point		
				from a drawn tangent		
	(d)	0 and -1.75 to -1.65 and 1.65 to 1.75	2	B1 for two correct values		
	(e)	-1.2 to $-0.8 < k < 2.8$ to 3.2	2	B1 for each correct or SC1 for reversed answers		

Page 6	Mark Scheme	Syllabus Syllabus
	IGCSE – May/June 2014	0581
		°C.

Qu		Answers	Mark	Part Marks
9	(a) (i)	37.5 to 38.5	1	350
	(ii)	19.5 to 20.5 nfww	2	B1 for [LQ =] 23.5 to 24 or [UQ =] 43.5 to 44
	(iii)	43	2	B1 for 56 seen or horizontal line drawn at $cf = 56$
	(b) (i)	31.8[4] nfww	4	M1 for midpoints soi (condone 1 error or omission) and M1 for use of $\sum ft$ with t in correct interval including both boundaries (condone 1 further error or omission) and M1 (dep on 2 nd M1) for $\sum ft \div 80$ (2547.5 $\div 80$)
	(ii)	Correct histogram	4	B1 for each correct block with correct width and height If B0 then SC1 for four correct f.d.s or four correct widths
10	(a) (i)	5	1	
	(ii)	$-2\frac{1}{3}$ oe	2	B1 for $[h(-1) =]\frac{1}{3}$ soi or M1 for $2(3^x) - 3$
	(iii)	$\frac{x+3}{2}$ or $\frac{x}{2}$ + 1.5 as final ans	2	M1 for $y + 3 = 2x$ or $x = 2y - 3$ or $\frac{y}{2} = x - 1.5$ or better or correct reverse flowchart
	(iv)	4x - 9 as final answer nfww	2	M1 for $2(2x - 3) - 3$
	(v)	(2x-3)(x+1) = 1 + 2(x+1)	M1	(2x-5)(x+1) = 1 (eliminate fractions)
		$2x^2 - 3x + 2x - 3$ or better seen	B 1	$2x^2 - 5x + 2x - 5$ or better seen
		$2x^2 - 3x - 6 = 0$	A1	No errors or omissions seen

PA CAMBRIDGE

Page 7	Mark Scheme	Syllabus	S. Y
	IGCSE – May/June 2014	0581	12

ſ

Qu		Answers	Mark	Part Marks
	(vi)	$\frac{-(-3)\pm\sqrt{(-3)^2-4\times2\times-6}}{2\times2}$	B2	B1 for $\sqrt{(-3)^2 - 4 \times 2 \times -6}$ or better [$\sqrt{5}$ and if in form $\frac{p + \sqrt{q}}{\sqrt{q}}$ or $\frac{p - \sqrt{q}}{\sqrt{q}}$
		2.64 and – 1.14 cao	B1B1	r r B1 for $p = -(-3)$ and $r = 2 \times 2$ or better SC1 for 2.64 and -1.14 seen in working or 2.6 and -1.1 as final ans
	(b)	$\frac{x-1}{x+5}$ as final answer nfww	4	or 2.637. and -1.137 as final ans or -2.64 and 1.14 as final ans B3 for $(x - 1)(x - 2)$ and $(x + 5)(x - 2)$ or B2 for $(x - 1)(x - 2)$ or $(x + 5)(x - 2)$
				or SC1 for $(x + a)(x + b)$ where a + b = 3 or -3 or $ab = 2$ or -10
11	(a) (i)	(-5,7)	1	
	(ii)	5	2	M1 for $\sqrt{(-3)^2 + 4^2}$ or better
	(b) (i)	(a) $\frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$ or $\frac{1}{5}(3\mathbf{a} + 2\mathbf{b})$ final answer	2	M1 for any correct vector path for \overrightarrow{ON}
		(b) $\frac{2}{5}$ a	2	M1 for any correct vector path for \overrightarrow{NY}
	(ii)	$NY = \frac{2}{5}BC$ oe	1dep	dep on (b)(i)(b) correct
		[NY] parallel to [BC]	1dep	dep on $\overline{NY} = k\mathbf{a}, k \neq 1$

PA CAMBRIDGE