

MARK SCHEME for the May/June 2014 series

0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa	age 2	Mark Scheme	Syllabus	
		IGCSE – May/June 2014	0581	9Day
brev	viations			Cambridge
Э	correct answer onl	у		101.
р	dependent	-		20
-	follow through aft	er error		-e.
V	ignore subsequent	working		
	or equivalent	-		
2	Special Case			
WW	not from wrong w	orking		

- dependent dep \mathbf{FT}
- follow through after error ignore subsequent working isw
- or equivalent oe
- Special Case SC
- not from wrong working seen or implied nfww
- soi

Qu		Answers	Mark	Part Marks
1	(a)	62100[.00] Final answer	2	B1 for 62 074[. 35] or 62 070
	(b)	39300	3	M2 for 45981÷ 1.17 oe or M1 for 45981 associated with 117 [%]
	(c)	20436	2	M1 for 45981÷ (3+4+2) or 45981 × 4
	(d)	4	3	M2 for $\frac{1.5 \times 1000}{330}$ oe
				or M1 for figs 4545 or 455
	(e)	25545	2	M1 for $45981 \times \frac{5}{9}$
2	(a)	$10 < x \le 25 25 < x \le 30 \\ 30 < x \le 35 35 < x \le 50 \\ 50 < x \le 60$	2	5 correct B1 for 3 or 4 correct or SC1 for all correct but in the form 10 to 25 or 10 - 25
		13 33 19 [4] 15 6	3	B2 for 4 correct or B1 for 3 correct
	(b)	25.1[0] or 25.13 to 25.14 nfww	4	M1 for mid-values soi, condone one error or omission 5 17.5 27.5 32.5 42.5 55 soi and M1 for $\sum fx$ for any x in intervals including boundaries, but all fs must be integers, condone one further error or omission
				and M1 dep for $\sum fx \div 90$
				Dep on 2nd M mark earned

Page 3	Mark Scheme	Syllabus r
	IGCSE – May/June 2014	0581

		IGCSE – May/June 20	014	0581 230
Qu		Answers	Mark	Part Marks
3	(a) (i)	72[.0] or 71.98 to 71.99 nfww	3	0581Part MarksM2 for [sin P =] $\frac{97}{\frac{1}{2} \times 12 \times 17}$ oeor M1 for implicit version
	(ii)	16.2 or 16.18 to 16.19 nfww	4	M2 for $6^2 + 17^2 - 2 \times 6 \times 17 \times \cos(\text{their } 72)$ or M1 for implicit form
				and A1 for $[XR^2 =]$ 261.8 to 262
	(b)	7.61 or 7.612 nfww	4	M3 for $[a =]$ 9.4 × sin 37 ÷ cos 42 oe or $[a =]$ 9.4sin37/sin(90–42)
				or M2 for [a =] their height ÷ cos 42 oe or $\frac{a}{\sin 37} = \frac{9.4}{\sin(90 - 42)}$ oe
				or M1 for their height $\div a = \cos 42$ or for [their height =] 9.4 × sin 37 oe
				or B1 for 48° correctly used or seen in correct position on diagram
	(c)	50	1	
		130	1	
4	(a)	0, 4.5, 3.11[1]	3	B1, B1, B1
	(b)	Complete correct curve with	5	B3 FT for 9 points correctly plotted
		minimum below $y = 2$		B2 FT for 7 or 8 points correctly plotted
		y 4 3+		or B1 FT 5 or 6 points correctly plotted
				and B1 indep two separate branches not touching or cutting <i>y</i> -axis
	(c)	- 0.5 to - 0.6 0.6 to 0.7 2.8 to 2.9	1 1 1	if 0 SC1 for $y = 3$ indicated
	(d)	Correct line or no line and - 0.7 to - 0.6 nfww	3	Must check line - not if wrong line B2 for $y = 1 - x$ ruled correctly
				or SC1 for ruled line with either gradient -1 or <i>y</i> -intercept 1 but not line $y = 1$ or correct freehand line

Page 4		je 4	Mark Scheme	Syllabus	
			IGCSE – May/June 2014		0581 732
Qu			Answers	Mark	Part Marks
	(e)		tangent ruled at $x = 2$ and 0.62 to 0.8	3	Syllabus r 0581 0581 Part Marks Accept integer/integer provided in rangent or correct tangent drawn and M1 for change in y / change in x dep on any tangent or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent
	(f)		$\frac{1}{r^2} = -x$ or $1 + x^3 = 0$	M1	
			$\frac{1}{x^2} = -x \text{ or } 1 + x^3 = 0$ 1 = -x ³ or x ³ = -1	M1	dep M1
			$x = \sqrt[3]{-1}$	A1	dep M2
5	(a)	(i)	$\begin{pmatrix} 2\\4 \end{pmatrix}$	1	
		(ii)	5.83 to 5.831	2	M1 for $3^2 + 5^2$ seen
	(b)	(i)	$-2\mathbf{p}+\mathbf{q}$ oe	1	accept unsimplified
		(ii)	$\overrightarrow{PS} = -\mathbf{p} + 2\mathbf{q} \text{ or } \overrightarrow{SP} = \mathbf{p} - 2\mathbf{q}$	B1	
			$\overline{MS} = -\frac{2}{3}\mathbf{p} + \frac{4}{3}\mathbf{q} \text{ seen}$	B1	
			or $\overrightarrow{SM} = \frac{2}{3}\mathbf{p} - \frac{4}{3}\mathbf{q}$ seen		
			or $\overrightarrow{RM} = \frac{2}{3} (-2\mathbf{p} + \mathbf{q})$ soi		
			or $\overrightarrow{MR} = \frac{2}{3} (2\mathbf{p} - \mathbf{q})$ soi		
			or $\overline{MQ} = \frac{1}{3}(-2\mathbf{p}+\mathbf{q})$ soi		
			or $\overline{QM} = \frac{1}{3}(2\mathbf{p} - \mathbf{q})$ soi		
			$\overrightarrow{PM} = \mathbf{p} + \overrightarrow{RM}$	M1	Any correct route for \overrightarrow{PM} eg $\overrightarrow{PR} + \overrightarrow{RM}$
			or $\mathbf{p} - \overline{MR}$		
			or $-\mathbf{p} + \mathbf{q} + QM$ or $-\mathbf{p} + \mathbf{q} - \overline{MQ}$		
			$\begin{bmatrix} = -\frac{1}{3}\mathbf{p} + \frac{2}{3}\mathbf{q} \end{bmatrix}$		
			1 : 3 nfww	A1	After 0 scored, SC1 for 1 : 3

Page 5		e 5		k Scheme May/June 2014	Syllabus 0581 Approximation
Qu			Answers	Mark	Part Marks
6	(a)	(i)	$\frac{1}{6}$	1	Part Marks
		(ii)	$\frac{4}{6}$ oe	1	
		(iii)	$\frac{2}{6}$ oe	1	
	(b)		$\frac{16}{36}$ oe	3	M2 $\frac{2}{6} \times \frac{4}{6} + \frac{4}{6} \times \frac{2}{6}$ only oe
					or M1 for one of $\frac{2}{6} \times \frac{4}{6}$ or $\frac{4}{6} \times \frac{2}{6}$ soi by $\frac{2}{9}$
	(c)		$\frac{48}{360}$ oe	3	M2 for $\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$ only oe or M1 for denominators 6, 5, 4, 3 soi in product of four fractions
,	(a)	(i)	148	1	
		(ii)	122	2	B1 for 58 seen at <i>A</i> or 32 seen at <i>Y</i>
		(iii)	148	1	
		(iv)	106 nfww	3	B1 for [sum of interior angles =] 720 and M1 for $\frac{1}{2}$ {(<i>their</i> 720) – (<i>p</i> + <i>q</i> + <i>t</i> +90)}
	(b)	(i)	63	2	B1 for angle $RPS = 27$ or 90 at <i>P</i> or at <i>S</i> seen or stated
		(ii)	54	2	B1 for <i>their x</i> or 63 or letter x at Q seen or state

Syllebus

Page 6 Mark Scheme			Syllabus
	IGCSE – May/June 2	2014	0581 230
	Answers	Mark	Syllabus r 0581 9000000000000000000000000000000000000
(a) (i)	$7 \times 2 + (2x - 3)(x + 4) = 2(x + 4)$	M1	Allow if bracket[s] omitted but recover
	$2x^2 + 8x - 3x - 12$ or better seen	B1	com
	$2x^2 + 3x - 6 = 0$	A1	with no errors seen and brackets correctly expanded on both sides and no omission of brackets
(ii)	$\sqrt{(3)^2 - 4(2(-6))}$ or better p = -3 and $r = 2(2)$	B1	or $\left(x+\frac{3}{4}\right)^2$
		B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both
			Or $-\frac{3}{4} + \text{or} - \sqrt{\frac{57}{16}}$
	1.14 and – 2.64 cao	B1B1	SC1 for 1.1 and -2.6 final answer or 1.137 and -2.637 final answer or 1.14 and -2.64 seen in working or for -1.14 and 2.64 as final ans
(b)	$\pi \times x^2 + \pi \times x \times 3x$	M2	or M1 for $\pi \times x \times 3x$
	$4[\pi]x^2 = [\pi]r^2$	M1	Dep on M2
	2x = r	A1	with no errors seen
(a)	4 - 6x final answer	1	
(b)	9x - 8 final answer	2	M1 for $4 - 3(4 - 3x)$ seen
(c)	$\frac{1}{27}$ final answer	3	M2 for 3^{-3} soi by final answer 0.037037 to 3sf or better or M1 for $[g(-1) =]$ 3 soi
(d)	$\frac{4-x}{3}$ of final answer	2	M1 for a correct first step
			$3x = 4 - y$ oe or $x = 4 - 3y$ or $\frac{y}{3} = \frac{4}{3} - x$
(e)	$\frac{4}{3}$ or $1\frac{1}{3}$ or 1.33 or better	3	M2 for $3x - 4 = 0$ or better
			or M1 for $3^{-(4-3x)}$
	(a) (i) (b) (c) (d)	(a) (i) $7 \times 2 + (2x - 3)(x + 4) = 2(x + 4)$ $2x^2 + 8x - 3x - 12$ or better seen $2x^2 + 3x - 6 = 0$ (ii) $\sqrt{(3)^2 - 4(2(-6))}$ or better p = -3 and $r = 2(2)1.14 and -2.64 cao(b) \pi \times x^2 + \pi \times x \times 3x4[\pi]x^2 = [\pi]r^22x = r(a) 4 - 6x final answer(b) 9x - 8 final answer(c) \frac{1}{27} final answer(d) \frac{4 - x}{3} oe final answer$	IGCSE - May/June 2014 Answers Mark (a) (i) $7 \times 2 + (2x - 3)(x + 4) = 2(x + 4)$ M1 $2x^2 + 8x - 3x - 12$ or better seen B1 $2x^2 + 3x - 6 = 0$ A1 (ii) $\sqrt{(3)^2 - 4(2(-6))}$ or better B1 $p = -3$ and $r = 2(2)$ B1 (iii) $\sqrt{(3)^2 - 4(2(-6))}$ or better B1 $p = -3$ and $r = 2(2)$ B1 (b) $\pi \times x^2 + \pi \times x \times 3x$ M2 $4[\pi]x^2 = [\pi]r^2$ M1 $2x = r$ A1 (a) $4 - 6x$ final answer 1 (b) $9x - 8$ final answer 2 (c) $\frac{1}{27}$ final answer 3 (d) $\frac{4 - x}{3}$ oe final answer 2

Page 7	Mark Scheme	Syllabus r
	IGCSE – May/June 2014	0581

		IGCSE – May/June 20		0581 486
Qu		Answers	Mark	Part Marks
10	(a)	[<i>r</i> =] 2.30[9]	3	0581 Part Marks B2 for [r =] 2.31 or M2 for 4 tan 30
				or M1 for $\frac{r}{4} = \tan 30$
	(b)	333 or 332.5 to 332.6	4	M3 for $0.5 \times 8 \times 8 \times \sin 60 \times 12$ oe or M2 for $0.5 \times 8 \times 8 \times \sin 60$ oe or M1 for <i>their</i> triangle area × 12 shown dep on $(\frac{1}{2})$ used within <i>their</i> area of triangle
				method
	(c) (i)	30	3	M2 for 12 ÷ 0.4 or 120 ÷ 4 or SC1 for figs 3
	(ii)	6.65 or 6.647 to 6.648[]	2	M1 for $\pi \times 2.3^2 \times 0.4$
				or SC1 for $\pi \times 2.3^2 \times 4$ soi by 66.5 or 66.47 to 66.48[]
	(iii)	40[.0] or 40.1 or 40.0 to 40.2 nfww	3	M2 for $100 - \frac{their(c)(i) \times their(c)(ii)}{their(b)} \times 100$ their(b) - their(c)(i) × their(c)(ii)
				or $\frac{their(b) - their(c)(i) \times their(c)(ii)}{their(b)} \times 100$
				or M1 for $\frac{their(c)(i) \times their(c)(ii)}{their(b)} \times 100$
				or $\frac{their(b) - their(c)(i) \times their(c)(ii)}{their(b)}$
11	(a)	$\frac{1}{8}$ $\frac{1}{16}$ $\frac{1}{32}$	2	B1 for 2 correct
		$\frac{1}{2^{n-1}}$ oe	2	SC1 for $\frac{1}{2^n}$ oe
		$2^{-3} 2^{-4} 2^{-5}$	1	
		2^{1-n} or $2^{-(n-1)}$	1	
	(b) (i)	64 256 1024	1	
		$2^6 \ 2^8 \ 2^{10}$	1	
	(ii)	$2^{2(n-1)}$ or 2^{2n-2}	1	
	(c)	16384	2	B1 for <i>n</i> = 8