CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0581 MATHEMATICS

0581/21 Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

BBCAMRRIDGE

Page	2 Mark Scheme	Sy. oer
	Cambridge IGCSE – October/November 2014	058
Abbrevi	iations	Carry
cao	correct answer only	Oric
dep	dependent	98
FŤ	follow through after error	, in
isw	ignore subsequent working	- On
oe	or equivalent	
SC	Special Case	
C		

Abbreviations

not from wrong working nfww

seen or implied soi

	Qu.	Answers	Mark	Part Marks
1		8.1722 cao	2	B1 for 8.17 or 8.172 or 8.1721 or 8.17215
2		$3 \ 3.14 \ \pi \ 3.142 \ \frac{22}{7}$	2	B1 for 3.141[5] to 3.1416 and 3.1428 to 3.1429 or 3.143 seen or SC1 for 4 in correct order
3	(a)	E B A cao	1	
	(b)	Z cao	1	
4	(a)	-3	1	
	(b)	4	1FT	FT their numerical mode
5		$\frac{3}{12}$ and $\frac{2}{12}$	M1	Equivalent denominators can be used, working must be shown.
		$\frac{5}{12}$ cao	A1	
6	(a)	15.1 cao	1	
	(b)	20 cao	1	
7		2.5[0] or 2.501 nfww	3	M2 for $2.1 \times \left(1 + \frac{6}{100}\right)^3$ oe
				or M1 for $2.1 \times \left(1 + \frac{6}{100}\right)^n$ oe where $n \ge 2$ or for figs $21 \times \left(1 + \frac{6}{100}\right)^3$ oe
8		0.29 cao	3	M2 for 30 – (24×1.2378) or (24×1.2378) – 30 or M1 for 24×1.2378
9	(a)	280	1	
	(b)	5×10^{6}	2	B1 for 5 000 000 oe or B1 for answer $k \times 10^6$ or 5×10^k

www.xtrapapers.con

Page 3	Mark Scheme	Syl. Sper
	Cambridge IGCSE – October/November 2014	058

	1		To the state of th
10	3.75 oe	3	M2 for $3 \times 5 = 7x - 3x$ oe or M1 for $3(x+5) = 7x$ or $x+5 = \frac{7}{3}x$ or $1 + \frac{5}{x} = \frac{7}{3}$ or better
			or $1 + \frac{5}{x} = \frac{7}{3}$ or better
11 (a)	x^6	1	
(b)	$\frac{x^2}{3}$	2	B1 for answer kx^2 or $\frac{x^k}{3}$ or $\frac{1}{3}$
12	5 -5 nfww	3	M1 for correctly eliminating one variable A1 for $x = 5$ A1 for $y = -5$
			If zero scored SC1 for correct substitution and evaluation to find the other variable
13	[±] 8 nfww	3	M1 for $y = k\sqrt{x+5}$ A1 for $k = [\pm] 2$ or M2 for $\frac{4}{\sqrt{-1+5}} = \frac{y}{\sqrt{11+5}}$ oe
14	$\begin{pmatrix} 4 & 16 \\ 2 & 8 \end{pmatrix}$	3	M2 for $\begin{pmatrix} 12 & 48 \\ 6 & 24 \end{pmatrix}$ and $\begin{pmatrix} 8 & 32 \\ 4 & 16 \end{pmatrix}$ or M1 for $\begin{pmatrix} 12 & 48 \\ 6 & 24 \end{pmatrix}$ or for $\begin{pmatrix} 8 & 32 \\ 4 & 16 \end{pmatrix}$
15 (a) (i)		2	B2 for correct ruled bisector with correct arcs or B1 for correct bisector with no/incorrect arcs
(ii)		2	B2 for correct ruled bisector with correct arcs or B1 for correct bisector with no/incorrect arcs
(b)		1	correct shading
16	142 or 142.0	5	B1 for <i>CBD</i> = 30
			M2 for $[\sin D =] \frac{6 \times \sin theirB}{8}$ oe
			or M1 for $\frac{6}{\sin D} = \frac{8}{\sin(their30)}$ oe
			A1 for $[D =]$ 22 or 22.0 or 22.02 B1FT for 90 + (their30 + their22) evaluated correctly for their final answer or for 360 – 90 – theirBCD evaluated correctly for their final answer

www.xtrapapers.com

Page 4	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058

					3
17			890 or 890.1 to 890.2	5	M4 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right) + \pi \times 5^2 \times 8$
					or M3 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right)$ and $\pi \times 5^2 \times 8$
					or M2 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right)$ or $\pi \times 5^2 \times 8$
					or M1 for $\frac{4}{3} \times \pi \times 5^3$
18	(a)		0.6 0.2 0.8 in correct places	2	B1 for 0.6 in correct place B1 for 0.2 and 0.8 in correct places
	(b)		0.52 oe nfww	3	M2FT for $1 - (their\ 0.6 \times their\ 0.8)$ oe or M1FT for a correct product from <i>their</i> tree in (a)
19	(a)		CBA and BDA are equilateral oe	1	
	(b)		67[.0] or 67.02 to 67.03	2	M1 for $\frac{120}{360} \times \pi \times 8^2$ oe
	(c)	(i)	39.3 or 39.28 to 39.33	3	M2FT for $their(\mathbf{b}) - \frac{1}{2} \times 8^2 \times \sin 120$ oe or M1 for $\frac{1}{2} \times 8^2 \times \sin 120$ oe
		(ii)	78.6 or 78.7 or 78.56 to 78.66	1FT	FT 2 × their(c)(i) correctly evaluated
20	(a)		0.4 or $\frac{2}{5}$	2	B1 for $[f(2) =] 4$
					or M1 for $\frac{2}{(3x-2)+1}$ or better
	(b)		$-0.8 \text{ or } -\frac{4}{5}$	2	M1 for $2 = 10(x+1)$ or better
	(c)		3x - 6 or $3(x - 2)$ nfww	3	M2 for $3(2x)-2-(3(x+2)-2)$ or M1 for $[f(2x)=]3(2x)-2$ or $[f(x+2)]=3(x+2)-2$