CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

Www.xtrapapers.com MARK SCHEME for the October/November 2014 series

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2

Mark Scheme Cambridge IGCSE – October/November 2014

Sy. Der 058 Photoanbhidde.com

Abbreviations

1100101	
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
~~:	acon on implied

soi seen or implied

Qu	Answers	Mark	Part Marks
1 (a) (i)		2	M1 for $72 \div (7 + 2 + 3)$
(ii)		2	M1 for $13.5 \div 3 \times (7 + 2 + 3)$ oe
(iii)		3	M2 for 8.4[0] ÷ 1.12 oe or M1 for 112[%] associated with [\$]8.4[0] oe
(b) (i)	$6 \times 0.5 \times 2 \times 2 \times \sin 60$ oe	M2	M1 for a correct relevant area inside the hexagon e.g. $0.5 \times 2 \times 2 \sin 60$ oe
	10.38 to 10.39[] [= 10.4]	A1	Must see 10.38 to 10.39[]
(ii)	4.67 to 4.68	2	M1 for 10.4 × figs 45 [figs 467 to 468]
(iii)	273	4	M1 for <i>their</i> (b)(ii) $\times 1250 \div 1000$ A1 FT for <i>their</i> (b)(ii) $\times 1250 \div 1000$ evaluated to at least 3 sf M1dep on previous M1 for <i>their</i> mass in tonnes (rounded up) $\times 45.5[0]$ if between 6 and 10 or for <i>their</i> mass in tonnes (rounded up) $\times 47[.00]$ if between 1 and 5 or for <i>their</i> mass in tonnes (rounded up) $\times 44[.00]$ if
			or for <i>their</i> mass in tonnes (rounded up) \times 44[.00] if over 10

Page 3		Scheme	syn Syn oer
	Cambridge IGCSE – (October/	/November 2014 058 280
Qu	Answers	Mark	Part Marks Philip
(a)	$[\pm]\sqrt{v^2+2as}$ final answer	2	M1 for correct first step, i.e. $u^2 = v^2 + 2as$
(b) (i)	$\frac{60}{x} + \frac{45}{x+4} = 6$ oe	M2	Write weight weight weight with the second
	60(x+4) + 45x = 6x(x+4) or better	M1	Dep on M2
	60x + 240 + 45x = 6x2 + 24x oe 0 = 2x ² - 27x - 80	A1	[6x2 - 81x - 240 = 0] Dep on M3 and brackets expanded and with no errors or omissions throughout
(ii)	16 final answer	3	M2 for $(x - 16)(2x + 5) [= 0]$ or M1 for partial factorisation e.g. $x(2x + 5) - 16 (2x + 5)$ or SC1 for $(x + a)(2x + b)[= 0]$ where $ab = -80$ or 2a + b = -27
			or B2 for $\frac{27+or-\sqrt{(-27)^2-4.280}}{2.2}$ or $[-]\sqrt{40+\left(\frac{27}{4}\right)^2} + \frac{27}{4}$
			or B1 for $\frac{-27 + or - \sqrt{q}}{2.2}$ or $\sqrt{(-27)^2 - 4.2 80}$ or $\left(x - \frac{27}{4}\right)^2$
(c) (i)	0.75 × 20 [=15]	1	
(ii)	150 cao	4	M3 for $90 + T = 1800 \times 2 \div 15$ oe or $T - 110 = (1800 - (90 \times 15) - (20 \times 15 \div 2)) \times 2 \div 15$ oe or $t = (1800 - (90 \times 15) - (20 \times 15 \div 2)) \times 2 \div 15$ oe [t = 40]
			or M2 for $\frac{1}{2}(90 + T) \times 15 = 1800$ oe or $\frac{1}{2}(T - 110) \times 15 + 90 \times 15 + \frac{1}{2}(20 \times 15) = 1800$ of or $1800 - \frac{1}{2} \times 20 \times 15 - 90 \times 15$ oe [300 for area of 'end' triangle]
			or M1 for method for area of triangle or rectangle or trapezium soi

ver 058

Ρ	age 4		Scheme	e Syl Ard per /November 2014 058 Page		
		Cambridge IGCSE – October/November 2014 058				
	Qu	Answers	Mark	Part Marks		
	(d)	10 cao nfww	3	Syl oer November 2014 058 Part Marks M2 for 22.5 ÷ 2.25 or M1 for 21.5 to 22.5 ÷ 2.25 to 2.75 or B1 for 22.5 or 2.25 seen		
5	(a)	Correct reflection (0, 1) (3, 1) (3, 3)	1			
	(b)	Correct rotation (-5, 1) (-7, 1) (-5, 4)	2	SC1 for rotation of 90° anticlockwise about the wrong centre or 90° clockwise about (-4, 0) or for 3 correct points plotted but not joined		
	(c) (i)	Enlargement [scale factor] 2 [centre] (-7, 7)	3	B1 for each		
	(ii)	1 : 4 or 3 : 12 or ¹ / ₄ : 1	2	M1 for $1 : 2^2$ oe, e.g. $(3 \times 2)/2 : (6 \times 4)/2$ or SC1 for $4 : 1$ or $12 : 3$ or $1 : \frac{1}{4}$		
	(d)	$\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$	2	B1 for $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$, <i>k</i> may be algebraic or numeric but $\neq 0$ or 1 or SC1 for $\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$		
	(e) (i)	Correct shear drawn (0, 1) (-3, -5) (-3, -3)	3	B2 for two correct points plotted or if not plotted correctly shown in working or B1 for $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or better		
	(ii)	Shear y-axis or $x = 0$ invariant [factor] 2	3	B1 for each		
	(iii)	$\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ oe	2	B1 for [determinant =] 1 shown or stated or $k \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ soi, $k \neq 0$		

www.xtrapapers.com

Ρ	age	5	Mark Cambridge IGCSE – (Scheme October	e Syl Ard per November 2014 058 778
	Qu		Answers	Mark	Part Marks
ł	(a)	(i)	11 - x final answer	2	Sy.oer/November 2014058Part MarksM1 for $8x - 4 - 9x + 15$ or B1 for final answer $11 - kx$ or $k - x$
		(ii)	$6x^2 - xy - 12y^2$ final answer	3	M2 for $6x^2 + 8xy - 9xy - 12y^2$ [= 0] or for final answer with one error in a coefficient (includes sign) but otherwise correct
					or M1 for any two of $6x^2$, $8xy$, $-9xy$, $-12y^2$
	(b)		$x(x^2-5)$ final answer	1	Condone $x(x - \sqrt{5})(x + \sqrt{5})$ as final answer
	(c)		$x \ge 4$ or $4 \le x$ final answer nfww	3	B2 for 4 with no/incorrect inequality or equals sign as answer or M2 for $8x + 4 \le 15x - 24$ or better
					or M1 for $4(2x + 1) \le 3(5x - 8)$
	(d)	(i)	p = 4.5 oe q = 8.25 oe	3	B2 for one correct answer or for $(x - 4.5)^2 - 8.25$ oe seen or M1 for $(x - 4.5)^2$ oe seen or $x^2 - px - px + p^2$ seen and M1 for $p^2 - q = 12$ or $2p = 9$
		(ii)	-8.25 oe	1FT	\mathbf{FT} – their q
		(iii)	x = 4.5 oe	1FT	FT $x = their p$
	(a)		-2, 5.5	2	B1 for each value
	(b)		Correct curve	5	 B5 for correct curve over full domain or B3FT for 9 or 10 points or B2FT for 7 or 8 points or B1FT for 5 or 6 points Point must touch line if exact or be in correct square if not exact (including boundaries) and B1 independent for one branch on each side of the y-axis and not touching or crossing the y-axis SC4 for correct curve with branches joined
	(c)		$-2.6 \le x \le -2.4$ $0.6 \le x \le 0.7$	3	B1 for each value
			$1.8 \leq x \leq 1.9$		If B0 then SC1 for $y = 5$ used

www.xtrapapers.com

Page 6	Mark Cambridge IGCSE –	November 2014 Syl The per	
	Cambridge IGCSE – October/November 2014 058		
Qu	Answers	Mark	Part Marks
(d)	y = x + 5 ruled correctly and $-2.2 \le x \le -2.0$ $0.5 \le x \le 0.6$ $2.4 \le x \le 2.6$	4	Syn oer November 2014 058 Part Marks B1 for $y = x + 5$ ruled correctly B1indep for each value
6 (a)	2000 or 1998.75 or 1998.8 or 1999 nfww	4	M1 for midpoints soi (condone 1 error or omission) (500, 1250, 1750, 2250, 3000) and M1 for use of $\sum fx$ with x in correct interval including both boundaries (condone 1 further error or omission) (5000, 37500, 96250, 162000, 99000) and M1 (dep on 2nd M1) for $\sum fx \div 200$
(b) (i	i) 10, 40, 95, 167, 200	2	B1 for 2 correct
(ii	i) Correct curve or ruled polygon	3	 B1FT <i>their</i> (b)(i) for 5 correct heights within 1mm vertically and B1 for 5 points at upper ends of intervals on correct vertical line and B1FT (dep on at least B1) for increasing curve or polygon through 5 points After 0 scored, SC1FT for 4 correct points plotted
(iii	i) 68 to 80	2	M1 for 120 to 132 seen
(c)	$\frac{21}{50}$ oe	4	M3 for $\frac{9}{10} \times \frac{2}{5} + \frac{1}{10} \times \frac{3}{5}$ oe or better or M2 for $\frac{9}{10} \times \frac{2}{5}$ or $\frac{1}{10} \times \frac{3}{5}$ or $\frac{18}{50}$ oe or $\frac{3}{50}$ oe or M1 for sight of $\frac{1}{10}$ and $\frac{2}{5}$

Syle oper 058 058

Page 7	Mark Scheme
	Cambridge IGCSE – October/November 2014

	Qu	Answers	Mark	Part Marks
7	(a) (i)	Any two of with conclusionAngle ACD = angle ABD Angle CAB = angle CDB Angle AXC = angle DXB AND	2	Part Marks B1 for two pairs without a conclusion
		'triangles have equal angles' oe OR <u>All three of without</u> <u>conclusion</u> Angle ACD = angle ABD Angle CAB = angle CDB Angle AXC = angle DXB		e.g. similar and AA or AAA
	(ii)	(a) 10	2	M1 for $\frac{DX}{12.5} = \frac{3.2}{4}$ oe
		(b) $4^2 + 3.2^2 - 2 \times 4 \times 3.2\cos 110$	M2	or M1 for implicit version
		34.9 to 35	A1	Implied by answer 5.92 or 5.915 to 5.916 after M2
		5.92 or 5.915 to 5.916	B1	
		(c) 58.7 or 58.73[]	2FT	FT for $\frac{1}{2} \times 12.5 \times their$ 10 × sin110 oe correctly evaluated to 3 or more sig figs M1 for $\frac{1}{2} \times 12.5 \times their$ 10 × sin110 oe or $\frac{1}{2} \times 4 \times 3.2 \times sin110 \times (12.5/4)^2$ After 0 scored and 15.6 in (a)(ii)(a), allow SC1 for $\frac{1}{2} \times 4 \times 3.2 \times sin110 \times (12.5/3.2)^2$
	(b)	7.62 or 7.623 to 7.624	5	B4 for 37.6[2] or 37.63 or M2 for $[AB =] \frac{30}{\tan 31}$ or $30 \times \tan 59$ oe or M1 for $\tan 31 = \frac{30}{AB}$ or $\tan 59 = \frac{AB}{30}$ oe And M2 for $[BD =]$ their $AB \times \tan 37$ oe or M1 for $\tan 37 = \frac{BD}{their AB}$ oe

Syn Ber ember 2014 058

Page 8

	Qu		Answers	Mark	Part Marks M1 for \overrightarrow{OQ} recognised as pos vector.
8	(a)		2 c + 3 b	2	M1 for \overrightarrow{OQ} recognised as pos vector.
	(b)	(i)	3c - 6a or 3(c - 2a)	1	
		(ii)	2c - 4a or $2(c - 2a)$	2	M1 for any valid route from P to Q e.g. $-(3b-2a)-6a + their \overrightarrow{OQ}$ or $\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{AO} + \overrightarrow{OQ}$ or $\overrightarrow{PQ} = \overrightarrow{PB} + \overrightarrow{BQ}$
	(c)		$PQ = \frac{2}{3}AC$ oe and	2FT	STRICT FT dep on $\overrightarrow{PQ} = k\overrightarrow{AC}$ from (b)(i) and (b)(ii) B1FT for each statement
			<i>PQ</i> is parallel to <i>AC</i>		After 0 scored and $\overrightarrow{PQ} = k\overrightarrow{AC}$ in (b)(i) and (ii), allow SC1FT for correct statement, e.g. <i>PQ</i> is not parallel to <i>AC</i>
9	(a)		36, 9, 45	2	B1 for two correct values
			8 <i>n</i> + 4 oe	2	M1 for $8n + k$, for any k
			$(n-1)^2$ oe	2	M1 for a quadratic expression of form n^2 [+ $an + b$] oe
	(b)		19	2	M1 for $(n + 1)(n + 5) = 480$ or better or 20×24 seen
	(c)	(i)	$\frac{1}{3} + p + q = 12$ and no errors seen	1	Accept $p + q = 12 - \frac{1}{3}$ after $\frac{1}{3} [1^3] + p[1^2] + q[1]$ shown
		(ii)	$\frac{1}{3} \times 8 + 4p + 2q = 12 + 21$	2	M1 for 12 + 21 seen or 33 seen
	I	(iii)	$[p =] \frac{7}{2}$ oe $[q =] \frac{49}{6}$ oe	3	M1 for correct multiplication and subtraction or substitution using the correct given equations B1 for $[p=] \frac{7}{2}$ or $[q=] \frac{49}{6}$
					After 0 scored, SC1 for 2 values satisfying one of the original correct given equations