

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

0606/02

Paper 2, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2004 examination.

	maximum	minimum	mark required	for grade:
	mark available	A	С	E
Component 1	80	53	27	18
Component 2	80	57	31	21

Grade A* does not exist at the level of an individual component.

Mark Scheme Notes

- Marks are of the following three types:
- m. Method in units. te an intention Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being guoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
202	See Other Solution (the condidate makes a better attempt at the same

See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- e data of a nject and and B marks MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

JUNE 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS Paper 1
 Mark Scheme
 Syllabus
 P.

 ADDITIONAL MATHEMATICS- JUNE 2004
 0606
 1

	100- 00NL	
1. (i) $y=(3x-2) \div (x^2+5)$ dy/dx = $\frac{(x^2+5)3 - (3x-2)2x}{(x^2+5)^2}$	M1 A1	Formula must be correct - allow unsimplified.
(ii) Num = $15 + 4x - 3x^2 = 0$ when $\rightarrow x = -5/3$ or $x = 3$	M1 A1 [4]	Setting to 0 + attempt to solve. Both correct.
2. $x^3 = 5x-2$ $x^3 - 5x + 2 = 0$ Tries to find a value x = 2 fits $\div (x-2) \rightarrow x^2 + 2x - 1 = 0$ Solution $\rightarrow x = -1 \pm \sqrt{2}$	M1 A1 M1 DM1 A1 [5]	Equating + attempt at a value by TI Co - allow for (x-2) or for f(2) Must be ÷ by (x-his value) As by quadratic scheme Co
3. (i) y = 2x+3 -ve then +ve slope Vertex at (-h,0) y = 1 - x Line, -ve m, (k,0)	B1 DB1 B1 [3]	Must be 2 parts – ignore -2 to -1 V shape-Vertex on -ve x-axis + lines -ve slope, crosses axes at x,y +ve – allow if only in 1 st or 2 nd quadrants
(ii) $x + 2x + 3 = 1 \rightarrow x = -\frac{2}{3}$ (-0.65 to -0.70) $x - (2x+3) = 1 \rightarrow x = -4$ (-3.9 to -4.1)	B1 M1 AI [3]	From graph, or calculation or guess B2 if correct. M mark for any method. Squares both sides M1 quadratic A1 Answers A1
4. x = asin(bx)+c		
(i) a = 2 and b = 3	B1 B1	Wrong way round - no marks. No labels - allow B1 if both correct.
(ii) c = 1 (iii) 3 cycles (0 to 360) -1 to 3 Period 120° +	B1 B1 B1 DB1	Co Even if starting incorrectly. Needs to be marked - allow for any trig graph. Everything in relatively correct position
all correct.	[6]	- needs both B's

Page 1

Page 2	Mark Sche		2004	Syllabus	P. D
	ADDITIONAL MATHEMA	TICS-JUNE	2004	0606	1 230
Makes x $\rightarrow 5y^2 =$ Solution $\rightarrow (8,-3)$	= 0 and 5y + 2x = 1 or y the subject and subs y + 48 or $2x^2 - x = 120$ of quadratic = 0 and (-7.5,3.2)	M1 A1 DM1 A1	poor alget By schem Co	ora. A1 co. e for quadra	
d = √(15	.5 ² +6.2 ²) = 16.7	M1 A1 √ [6]	M mark in his 2 point	•	ng before. A1√ on
or(4 6 8	$ \begin{pmatrix} .6 & .3 & .1 \\ .5 & .4 & .1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} $ $ \begin{pmatrix} .6 & .5 \\ .3 & .4 \\ .1 & .1 \end{pmatrix} \begin{pmatrix} 300 \\ 240 \end{pmatrix} $	B2,1.0	whether th		s – independent c formable – allow ctor of 100.
(300 186	$54 \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} or (300 240 \begin{pmatrix} 5 \\ 5.2 \end{pmatrix}$	M1 A1	written in		ices must be er – for M mark, pe used.
inal answer	→ \$2748	M1 B1 [6]			method, inc of 100 loses last
T Roman	$\frac{\sin\alpha}{7} = \frac{\sin 135}{12}$ $\rightarrow \alpha = 24.4^{\circ}$	B1 M2 A1	7,12 and 7 Sine rule (If 45° or 1	135° opposi used in his	triangle. n 7 and 12, allow
= 20.6°	. Bearing is 020.6°	A1 [5]	Co. Allow	21°.	

					-	Kuapape	:15.COIII
Page 3	Mark Scher	ne		Syllabus	P. V.A	2	
	ADDITIONAL MATHEMAT	ICS-JUNE	2004	0606	1	Do.	
						C.	
ax + 3 = But Inx dy/dx = Use of	kis, y = 0 = 0 → x is -ve →no soln = 0 → x =1 = alnx + (ax+3).(1/x) $m_1m_2 = -1$	M1 A1 M1 B1 M1	Ignore oth Correct us For d/dx(li Could equ	attempt at er solutions se of "uv" fo nx), even if late m with	ormula. M0 given a	above.	Age cor
→ a = 2	nt of tangent = -1 ÷ (-1/5) 2	A1 A1 [7]	Co. Co.				
9. (a) $\begin{pmatrix} x - \\ 18C_{18} \\ \rightarrow 18 \\ \rightarrow - \end{pmatrix}$	₅ (x) ¹⁵ (1/2x ⁵) ³ 3.17.16(−¼) ÷ 6	B1 B1 B1 [3]	For ₁₈ C ₃ of For (±½) ³ Co	r ₁₈ C ₁₅ – even if in	(1/2x) ³		

→ -102 (b) $(1 + kx)^n$ Coeff of $x^2 = {}_nC_2k^2$ Coeff of $x^3 = {}_nC_3k^3$ Equating and changing to factorials → k = 3/(n-2) or equivalent without factorials	B1 B1 M1 A1	[3] [4]	Co Co. Co. Needs attempt at nCr Co
10. (i) Area = Δ – sector BCA = π – 1.4 or height = 20sin0.7 $\Delta = \frac{1}{2.20^2 sin(π - 1.4)}$ or $\frac{1}{2}$ bh = 197.1 Sector = $\frac{1}{220^2}$ 0.7 = 140 → Area = 57.1	M1 M1 A1	4]	Award for either of these. Correct method for area of Δ Use of $\frac{1}{2}r^2\theta$ Co
 (ii) DC = 20 x 0.7 (=14) AB = 2 x 20cos0.7 or cos rule BD = AB - 20 = 10.6 → Perimeter = 44.6 Could be [5] + [3] if AB used in part (i) 	M1 M1 A1 [·	4]	Use of s = rθ Correct trig – could gain this in (i) Co

www.xtrapapers.com

					Www.	xtrapapers.co	m
Page 4	Mark Schem	ne		Syllabus	P. ".A		
	ADDITIONAL MATHEMAT	ICS-JUNE	2004	0606	1	Do l	
11 (i) m -	$-a/x^3 \rightarrow y = \frac{1}{2}ax^{-2}$ (+c)	M1 A1	Any attor	npt to integra	to Co	even if	
Puts Puts	in (2, 3.5) \rightarrow 28 = a + 8c in (5, 1.4) \rightarrow 70 = a + 50c	DM1	Substitute +c missing	es one of his g	points – e	even if	
Soluti	tion \rightarrow a = 20, c = -1	M1 A1 [5]	(beware fo N.B: assu	nethod of soli ortuitous ans mes a = 20 points work (without ch	lecking	
A = [$x^{2} + 1)dx = -10x^{-1} + x$ $\begin{bmatrix} 1^{p} - \begin{bmatrix} 1^{2} = -10/p + p + 3 \end{bmatrix}$ $\begin{bmatrix} 1^{5} - \begin{bmatrix} 1^{p} = 10/p - p + 3 \end{bmatrix}$	M1 A1√ M1 M1	Use of lim or in A+B	his "curve" hits correctly (2 to 5). Awa these if only	ard M1 for	each.	
P = √	√10 or 3.16	A1 [5]	co				
12 EITHER							
	tions – 3 trig, 4 alg, 5 calc 8 from 12.						
(ii) T	$C_8 = 495$ and $A \rightarrow 0$ and $C \rightarrow 1$	M1 A1	1₂C₀ gets M marks.	11. Answer c	only gets b	ooth	
A	and $C \rightarrow 9$ Total = 10	M1 A1 [4]	Needs to I possibilitie	have conside es.	ered 2 of t	he	
	resses, $A \rightarrow H$				5 A A		
(ii) 1/a	P ₅ = 6720 ^{&} of (i) = 840 or ₇ P ₄ ^{&} of (i) = 4200 or 5 x (ii) or ₈ P ₅ − ₇ P ₅	M1 A1 M1 A1√ M1 A1√ [6]	Any metho	P₅ for M1 – c od ok. √ on (od ok. √ on (i) if approp	priate	

Page	5	Mark Scheme Syllabus Pt							
		Mark Scheme Syllabus P ADDITIONAL MATHEMATICS-JUNE 2004 0606 1 2 4 6 8 10 .8 19.4 37.4 74.0 144.4 99 1.29 1.57 1.87 2.16							
2 OR									
х	2	4	6	8	10				
у	9.8	19.4	37.4	74.0	144.4	_			
gу	0.99	1.29	1.57	1.87	2.16	-			
(i) F	inds va	alues c	of lav			M1	Knows wh	nat to do.	
()			55				Don't pen	alise incorre	ect scale.
[Draws (graph a	accurat	ely.		A1		rrect to ½ sn	nall square.
(ii) I	av – la	A + xlg	h			[2] B1		e – even if no	aranh
			;0 = 1.4 (±	0.05)		M1 A1		measured +	
			: 5.0 (±			M1 A1		measured +	
<i></i> .		_				[5]			
	$gy = xl_{0}$		e Y = 0	201		B1 M1	Even if no Must be a	line – give i	If line correct
		(± 0.2)		.301X		A1	To this ac		
-	· 1.0	(= 0.2)				[3]		ouruoy.	
					ii) gets				
			points						
	, in whi accura		e allow	marks					
	accure	.09.							
M 1 fo	or quad	Iratic e	quatior	n. Equa	tion mus	t be set to	o 0 if using fo	rmula or fac	tors.
ormul	a			•		Factor	-		
	e corre						ttempt to put		to 2 factors.
ignor	e arithr	netic a	nd alge	ebraic s	slips.	Each fa	actor then eq	uated to 0.	

JUNE 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS Paper 2

		**	ww.xtrapapers	.com
	Page 1	Mark Scheme Syllabus ADDITIONAL MATHEMATICS- JUNE 2004 0606	M1 A1	
			Can	
1	[4]	$(\mathbf{i} - 7\mathbf{j}) + \lambda(0.6\mathbf{i} + 0.8\mathbf{j}) = 4\mathbf{i} + k\mathbf{j}$	M1 A Tig	
		$1 + 0.6\lambda = 4 \qquad \Longrightarrow \qquad \lambda = 5$		COM
		$-7 + 0.8\lambda \qquad \Longrightarrow \qquad -7 + 0.8 \times 5 = -3 = k$	M1 A1	
2	[4]	Attempt at $\cos^{-1} 0.3 \implies [72.5^{\circ} A0] = 1.266 [5.017, 7.549]$ accept 1.3	M1 A1	
		$x + 1 = 2.532, 10034, 15.098 \implies x = 14.1$ or better	M1 A1	
3	[4]	(i) Some vegetarians in the college are over 180 cm tall [or equivalent]	B1	
		(ii) No cyclists in the college are over 180 cm tall [or equivalent]	B1	
		(iii) $B \cap C$ $\subset A'$ [or equivalent]	B1 B1	
4	[4]	$\left(1+\frac{1}{\cos \theta}\right)\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right) \qquad \Rightarrow \qquad \frac{1-\cos^2 \theta}{\cos \theta \sin \theta}$	M1 M1	
		$1 - \cos^2 \theta \equiv \sin^2 \theta \qquad \qquad \frac{\sin^2 \theta}{\cos \theta \sin \theta} \to \tan \theta$ Must be useful use of Pythagoras	B1 A1	
5	[5]	$x = \frac{\sqrt{20} \pm \sqrt{20} - (4 \times 2)}{2} = \sqrt{5} \pm \sqrt{3}$ or $\frac{\sqrt{20} \pm \sqrt{12}}{2}$	M1 A1	
		$\frac{1}{\sqrt{5} + \sqrt{3}} + \frac{2}{\sqrt{5} - \sqrt{3}} \qquad [\text{or } \frac{2}{\sqrt{20} + \sqrt{12}} + \frac{2}{\sqrt{20} - \sqrt{12}}]$ rationalising each fraction or bringing to common denominator	M1	
		Denominator = 2 [or 8] $\Rightarrow \frac{1}{c} + \frac{1}{d} = \sqrt{5}$	A1 A1	
6	[6]	(a) $2x^2 - 3x - 14 = 0 \implies (2x - 7)(x + 2) = 0 \implies x = -2, 3.5$	M1 A1	
		${x: x < -2} \cup {x: x > 3.5}$	A1	
		(b) Eliminate $y \Rightarrow x^2 + 4(8 - kx) = 20 [\text{ or } x \Rightarrow \left(\frac{8 - y}{k}\right)^2 + 4y = 20]$	M1	
		$x^{2} - 4kx + 12 = 0$ [or $y^{2} + (4k^{2} - 16)y + (64 - 20k^{2}) = 0$]		
		Apply " b ² = 4ac " $16k^2 = 48$ [or $16k^4 = 48k^2$] $\Rightarrow k = \pm\sqrt{3}$	M1 A1	

	tay	w.xtrapap
Page 2	Mark Scheme Syllabus	2.0
	ADDITIONAL MATHEMATICS-JUNE 2004 0606	Star.
7 [6]	(i) e^{2x-3} (= 7) $\Rightarrow x = \frac{1}{2}(3 + \ln 7) \approx 2.47 \sim 2.48$ (not 2.5)	M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M
	(ii) $h = 2e^x - 3$ (x, y or) $h > -3$ accept \ge	B1 B1
	(iii) h^{-1} (or y) = ln { $\frac{1}{2}$ (x + 3)} or ln(x + 3) – ln2 or lg{ $\frac{1}{2}$ (x + 3)}/lge but ln{ $\frac{1}{2}$ (y + 3)} M1 A0 lg (or log) { $\frac{1}{2}$ (x + 3)} M1 A0	M1 A1 (M1 for logs taken in valid way
8 [8]	(i) $\log_3(2x+1) - \log_3(3x-11) = \log_3\frac{2x+1}{3x-11}$ [Or, later, give M1 for $\log + \log = \log(\text{product})$	M1
	$\log_3() = 2 \implies () = 3^2$	B1
	$2x+1 = 9(3x-11) \implies x = 4$	DM1 A1
	(ii) $\log_4 y = \frac{\log_2 y}{\log_2 4} = \frac{1}{2} \log_2 y$ [or $\log_2 y = \frac{\log_4 y}{\log_4 2} = 2 \log_4 y$]	M1 A1
	$\frac{1}{2} \log_2 y + \log_2 y = 9$ [or log $_4 y + 2 \log_4 y = 9$] $\Rightarrow y = 2^6$ or $4^3 = 64$	DM1 A1
9 [8]	$6 + 4x - x^2 \equiv 10 - (x - 2)^2$	M1 A1
	(i) $x = 2$ $y = 10$ Maximum	B1√B1√B1
	(ii) $f(0) = 6$, $f(2) = 10$, $f(5) = 1$ \Rightarrow $1 \le f \le 10$ [alternatively $1 \le B1$, $\le 10 B1$]	M1 A1
	(iii) f has no inverse; it is not 1:1	B1
10 [10]	(i) $m_{BC} = 3/5$ Equation of AD is $y - 4 = 3/5(x + 2)$	B1 M1 A1
	$m_{AC} = -\frac{1}{4}$ Equation of CD is $y - 2 = 4(x - 6)$	B1 M1 A1
	(ii) Solve $x = 8, y = 10$	M1 A1
	(iii) Length of AC = Length of CD = $\sqrt{68}$	M1 A1
11 [10]	(i) $d/dx (2x-3)^{3/2} = (2x-3)^{1/2} \times 3/2 \times 2$	M1 A1
	$dy/dx = 1 \times (2x - 3)^{3/2} + (x + 1) \times \{ \text{ candidate's } d/dx (2x - 3)^{3/2} \}$	M1
	$= \sqrt{2x-3} \{ (2x-3) + 3(x+1) \} = 5x\sqrt{2x-3} \implies k = 5$	A1
	(ii) $\delta y \approx dy/dx \times \delta x = (dy/dx)_{x=6} \times p = 90p$	M1 A1
	$(y)_{x=6+p} = (y)_{x=6} + \delta y = 189 + 90p$	A1√
	(iii) $\int x\sqrt{2x-3}dx = 1/5 (x+1)(2x-3)^{3/2}$	M1
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{2}^{6} = 1/5 (189 - 3) = 37.2$	DM1 A1

Page 3	Mark Scheme Syllabus ADDITIONAL MATHEMATICS- JUNE 2004 0606	abac
[11] THER	(i) $a = dv/dt = 5e^{-1/2t}$ $v = 8 = 10(1 - e^{-1/2t}) \implies e^{-1/2t} = 0.2 \implies a = 1$	M1 M1 A1 M1 A1
	(ii) $s = \int v dt = \int (10 - 10 e^{-t/2}) dt = 10t + 20e^{-t/2}$ [] ₀ ⁶ = (60 + 20e ⁻³) - (20) ≈ 41 (iii) 10 (iv) 10 to the formula to th	M1 A1 DM1 A1 B1 B2,1,0
[11] R	(i) $d/d\theta \{(\cos\theta)^{-1}\} = -(\cos\theta)^{-2}(-\sin\theta) = \sin\theta/\cos^2\theta$	M1 A1
	(ii) $AX = 2\sec\theta$ $PX = 2\tan\theta$	B1 B1
	$T = \frac{2 \sec \theta}{3} + \frac{10 - 2 \tan \theta}{5}$	M1 A1
	(iii) $\frac{dT}{d\theta} = \frac{2}{3} \frac{\sin \theta}{\cos^2 \theta} - \frac{2}{5} \sec^2 \theta$	B1 B1√
	= 0 when $5\sin\theta$ = 3 \Rightarrow $\sin\theta$ = 3/5	M1 A1
	$PX = 2\tan\theta = 2 \times \frac{3}{4} = 1.5$	A1