UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0606 ADDITIONAL MATHEMATICS

0606/01 Paper 1 maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

WANN, PARAC CAMBridge. COM

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to
	ensure that the detailed working leading to the result is valid)

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

www.xtrapapers.com

Page 1	Mark Scheme	Syllabus
	IGCSE – November 2005	0606

age 1	Mark Scheme			Syllabus
	IGCSE – Nov	005	0606	
				Syllabus 0606 rors in squaring but extends and attempt at solution (= or > or > or >
\ C	1 4 - 0		Condens de se	ii b
Squares an			_	rors in squaring but ex
$x^2 - 13x + 3x + 3 = 4 \text{ and } 9$		Ml Al		and attempt at solution
+ x − 4 and 9 + x < 4 and x		A1	Independent of Co – not for ≤ o	\- ot >
x < 4 and x	- 9	[3		<i>n</i> ≥.
(a) (i) A'	○R	Bl	-	
	$' \cup B$ or $(A \cap B')'$	B1	Co	
(11) A	CB of (ATTB)	[2		
b) (i)	(ii) ·	,-	1	
E A	A A A A A A A A A A A A A A A A A A A	B1 [1	Co	
"A	97 200	B1 [1		
144				
0	. We			
(2x + 6/x) = x	+ c →			
$x^2 - cx + 12 =$		M1	Eliminates y and forms a quadratic eqn.	
se of b2-4ac	_	M1	Uses b2-4ac=0 on quadratic=0.	
c = 12 and		A1	Co	
c = -12		Al√	For the -ve roo	t of $c^2 = k$.
		[4	1	
.ength = 2-√3 \rea = (2-√3)		D1	Co	
rea = (2-v3) eight = volur		B1	Co	
eignt = voiut (2√3 = 3) ÷		м1	Used with volu	me and area
-	om by $7 + 4\sqrt{3}$	MI	Technique corr	
height = 3		Al		decimal answers leadi
neight - 3	213	[4		er – this gets 0/4
r (7-4√3)(a+	$+b\sqrt{3}$) = $2\sqrt{3}-3$ Sim eqns	١,		
	ore) M1 forming + sol A1)			
	,			
F(i+12j) at ((3i+2j). S (85i+5j) at -5i+kj			
t time t, r _F =	(1+3t)i+(12+2t)j	М1	M1 for one x or	y component.
	(85-5t)i +(5+kt)j	Al		omponents correct.
	3t = 85 - 5t $t = 10.5$	M1 A1		g x components. A1 C
		M1A1V		g y components. A1√
quate j's 12-	2t - 31 At R - 2/3	MILLIA	WIT for equating	g y components. At v

www.xtrapapers.com

Page 2	Mark Scheme	Syllabus	
	IGCSE – November 2005	0606	

		all.
$6 v = 6 - 6e^{-3t}$		Attempt at differentiation. Co.
(i) $a = dv/dt = 18e^{-3t}$ $t = \ln 2 e^{t} = 2 \rightarrow e^{-3t} = 1/8$	M1 A1	Attempt at differentiation. Co.
$t = \ln 2$ e ⁻² \rightarrow e ⁻³ = 1/8 \rightarrow a = 18/8 or 2.25	4.1	Co.
$\rightarrow a = 18/8 \text{ or } 2.23$	A1 [3]	Co.
(ii) $s = \int v dt = 6t + 2e^{-3t} [+c]$	MI AI	Attempt at integration. Co. (ignore c)
but $t=0$ when $s=0$, $\rightarrow c=-2$	DM1	Don't allow if c automatically = 0.
out i o when s o, o c = 2	Divil	Bon canon in canoniamounty of
Put $t = ln2 \rightarrow 2.41$	A1	Co.
	[4]	
7		
(a) $2 = \log_7 49$	B1	Anywhere
Combines two logs correctly	M1	Allow even if first B1 not given
Forms equation and solves	DM1	Needs to have got rid of all logs
$\rightarrow y = 2$	Al	correctly. Co
	[4]	
		Nb change to lg is same scheme -same
(h) 1 01		work needed.
(b) $\log_p 8 \times \log_{16} p$	M	Channa of hand area
$\log_p 8 = \log_2 8 \div \log_2 p = 3/\log_2 p$	M1	Change of base once
$\log_{16}p = \frac{1}{4}\log_2p$	M1	Same base – 2,8,16,10 – so that p cancels.
. V 0.75	A1	Co.
→ ¾ or 0.75	[3]	Co.
9 (2) [(1)	[2]	
$8 \qquad y = (x+2)\sqrt{(x-1)}$	В1	B1 for correct diff of $\sqrt{x-1}$
(i) $dy/dx = \sqrt{x-1} + (x+2) \times \frac{1}{2}(x-1)^{-\frac{1}{2}}$	M1	Use of "uv" for M. co
$=(x-1+\frac{1}{2}x+1)\div\sqrt{x-1}$	M1	Reasonable attempt at algebra
_ 3x	A1	co
$=\frac{3x}{2\sqrt{x-1}}$ $k=1.5 \text{ or } 1\frac{1}{2}$	[4]	
(ii) $\int_{2}^{5} \frac{x dx}{\sqrt{x-1}} = \frac{2}{3} \times \sqrt{(x-1)}(x+2)$	M1	Use of $\int =$ reverse of differentiation.
	A1√	For 1 + "his k"
evaluated from 2 to $5 = \frac{2}{3} \times (14 - 4)$	DM1 A1	Value at 25" - "value at 2". Co for A.
→ 20/3	[4]	
9 (a) 3cosx = 8tanx = 8sinx/cosx	MI	Use of t=s/c
$\rightarrow 3\cos^2 x = 8\sin x = 3(1 - \sin^2 x)$	M1	Use of s²+c=1
$\rightarrow 3s^2 + 8s - 3 = 0$	DM1	Correct attempt at quadratic = 0
\rightarrow s = -3 or $\frac{1}{3}$		
$\rightarrow x = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1 A1√	Co. for 180° - 1st answer.
	[5]	
as as to	1 1 1 1	For $\cos^{-1}(\pm \sqrt{3}/2)$
(b) $\cos(\frac{3}{3}y) = -\sqrt{3}/2$	M1	
$\rightarrow \frac{2}{3}y = \frac{5\pi}{6} \text{ or } 2\pi - (\text{answer})$	DM1	For 2π – answer
1		

www.xtrapapers.com

Page 3	Mark Scheme	Syllabus	.0	1	
	IGCSE – November 2005	0606	800		

Page 3	Mark So	cheme	Syllabus
rage 3	IGCSE – Nov		5 0606 2
,			of Alling.
10. 24 B(2,k)	(i) Pythagoras → AB=√40. BC=√40	M1 A1 [2]	Syllabus A. Hallar T. Syllabus T. Hallar T. Syllabus T. Hallar T. Syllabus T. Hallar T. Syllabus T. Hallar T. Hallar T. Syllabus T. Hallar T. Hall
6 (iii) Area o	(ii) $m \text{ of } AC = \frac{1}{2}$. m of BD = -2 $eqn BD \rightarrow y+2x=20$ $\rightarrow D (10, 0)$ or $M(4,12) \rightarrow m = -2$ D_{2x} if ABC : Area of ACD	B1 M1 M1 A1 [4]	Anywhere Use of $m_1m_2 = -1$ Not necessary to have eqn since $y=0$ may be used. Finds $M \rightarrow m$ of -2 equivalent to B1M1.
BM : MI = √20 : v		M1 M1 A1 [3]	Realises that only heights are needed. Pythagoras – any form ok for A mark. M1 ABC (40) M1 ACD (120) A1 1:3.
f:x-	→ Dx-3 -4 -2 ≤ x ≤ 3	B2,1 [2]	Must be "V" shaped to get any marks. Must cross -ve x and -ve y axes. Endpoint -ve y. Start point + ve y.
(ii) Range	off -4 to 3	B1 B1 [2]	Independent of graph4 on own ok. 3 on its own.
	$= 2 \rightarrow x = 2\frac{1}{2} \text{ or } 2.5$ = $-2 \rightarrow x = \frac{1}{2} \text{ or } 0.5$	B1 M1A1 [3]	Co – answer only Correct method of other solution. co
(iv) Largest	value is x value at "V" = $1\frac{1}{2}$	B1√ [1]	From his graph – or any other method
	of left hand part of "V". → -2x - 1.	MI AI [2]	Realises that one line only is needed + correct method $(y=mx+c \text{ etc})$. Or $-(2x-3)-4=-2x-1$ Doesn't need a or b implicitly mentioned

vw.xtrapapers.com

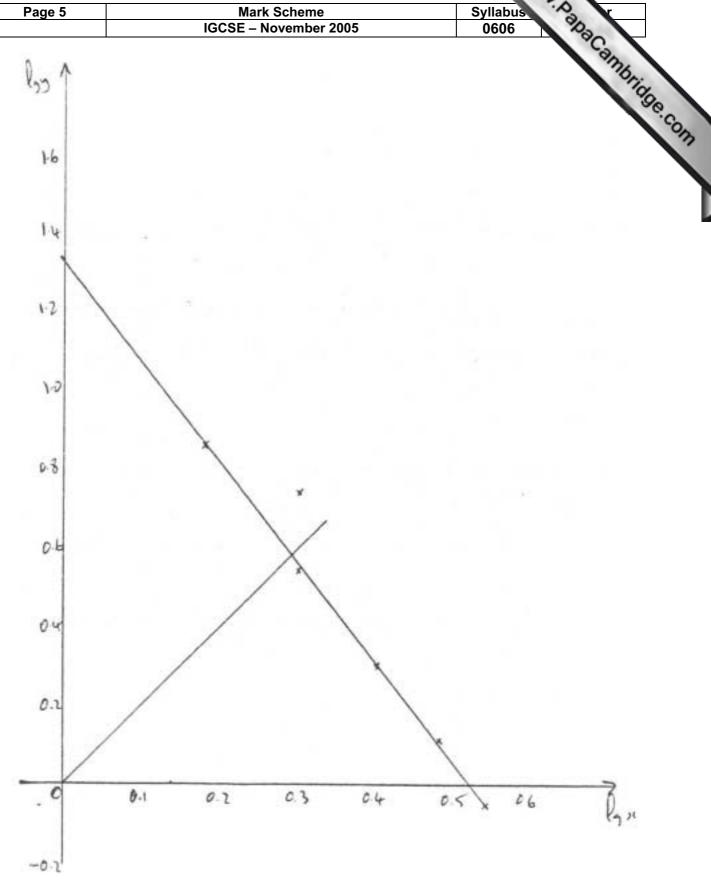
Page 4	Mark Scheme	Syllabus	·V	1	
	IGCSE – November 2005	0606	800		

age 4 Mark Sc			Syllabus	.0
IGCSE – Nove	ember 2005		0606	100
2 EITHER	M1 A2,1,0 [3] M1 A1 M1 A1 [4] M1 A1	Knows what to Within ½ squar Needs $m = \pm n$ f Needs $\lg a = int$ Allow M1 for s Reasonable attethrough (0,0). Co.	do. e. for M. Co for + ercept on y axi statement in log	s. g form.
12 OR (i) Area sector $COB = \frac{1}{2} \times 8^2 \times 1.2 = 38.4$ (ii) $AOC = \pi - 1.2 \text{ rad or } OAC = 0.6 \text{ rad } AC^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \times \cos(\pi - 1.2)$ or $AC = 2 \times 8 \times \cos(0.6 = 13.2)$ area = $\frac{1}{2} \times 13.2^2 \times 0.6 = 52.27$ (iii) Sector $ACD + \text{Shaded} = AOC + \text{Shaded} = AOC$	M1 A1 [2] B1 M1 A1 [5] M1 A1√ [5]	Use of ½r²θ wi Anywhere. Cosine rule or striangles. Use of ½r²θ wi Plan mark linki	splitting into tv th radians.	
Sector $ACC + Shaded = ACC + Shaded = ACC + Shaded = ACC = 1/2 × 8 × 8 × sin(\pi-1.2)= 29.8(3)Shaded = 29.83+38.4-52.27 = 15.9(allow 16.0)$	M1 A1 [3]	Independent mark tinks Co for either 1:	ark –for triangl	

Factors

Must attempt to put quadratic into 2 factors.

Each factor then equated to 0.


Formula.

Must be correct

- ignore arithmetic and algebraic slips.

trapapers.com

Page 5	Mark Scheme	Syllabus
	IGCSE – November 2005	0606

