UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2007 question paper

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	er
	IGCSE – October/November 2007	0606	80

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	
	IGCSE – October/November 2007	0606	

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)

Penalties

SOS

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.

See Other Solution (the candidate makes a better attempt at the same question)

- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	er
	IGCSE – October/November 2007	0606	

, ·		.		32	ipapers.co
Page 4	Mark S IGCSE – Octobe	Scheme vr/Novembe	ar 2007	Syllabus 0606	er
	i/ivoveilibe	51 4UU <i>l</i>	1 0000	3	
$1 \mathbf{A} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}, \mathbf{A}$ $\begin{pmatrix} 1 & -3 \\ 9 & -2 \end{pmatrix} + m \begin{pmatrix} 2 \\ 3 \end{pmatrix}$		M1 A1	Reasonable a All correct	Syllabus 2007 0606 Reasonable attempt (needs 2 correct) All correct	
$1 + 2m = n = 3$ $\rightarrow m = -3 = 3$		M1 A1 [4]	•	c must be correct r elements once	
`	$\left(\frac{1}{\sin\theta}\right) \equiv 2\cos \cot\theta$	M1	(1-c)(1+c) in	denominator	
Manipulation of $(1-c)(1+c) = s^2$	used	B1		attempt at numerator	
$\frac{2\cos\theta}{\sin^2\theta} \Rightarrow 2\cos\theta$	secθcotθ	M1	Knowledge of	cot and cosec	
All correct		A1 [4]	When all corr a.g Beware f	ect ortuitous answers.	
3 (i) $p = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$		M1	× top and bot	tom by √3 + 1	
		A1	Denominator	= 2	
P	$= 2 + \sqrt{3} - \frac{1}{2 + \sqrt{3}}$	A1 [3]	СО		
or $p - \frac{1}{p} = \frac{p}{2\sqrt{3}}$	$\frac{p^2-1}{p}$	M1 A1 [2]	Complete me	thod. co.	
4 (i) 4 men from 9 4 women fron Multiply toget	$16 = {}_{6}C_{4}$ (15)	B1 M1 A1 [3]	For either ₉ C ₄ Product of 2		
(ii) One twin include oth → 1050		M1 DM1 A1 [3]	For 2 _n C _r s. Two times his co	first answer.	
5 (i) Resultant vel → (240 i +100	= (960i +400j) ÷ 4 j)	M1 A1	со	stance by time	-
` ,	(240i +100j) – wind 300i + 40j	M1 A1	(could be win Needs subtra co	d × 4) then ÷ 4 later ction	
(ii) tanθ = 40 ÷ 3	00 (→ 7.6°)	[4] M1	Use of tan wit	h their 2 components	
ightarrow Bearing of	082° (awrt 82°)	A1 [2]	1101 3001 7401	ני	

Page 5	Mark Scheme	Syllabus	ęr
	IGCSE – October/November 2007	0606	

IGCSE – Octobe	r/Novembe	er 2007	0606	Va Va	0
6 (i) $\frac{dy}{dx} = \frac{6}{\sqrt{4x+1}}$ $y = \frac{6(4x+1)^{\frac{1}{2}}}{\frac{1}{2}} \div 4$ (+c) Uses (6,20) $\rightarrow c = 5$ ($y = 3\sqrt{4x+1} + 5$) (ii) Perp to $-\frac{1}{2} = 2$	B1 B1 M1 A1 [4]	For an expres For all correct Uses (6,20) in	ssion involving an integratior $-\frac{1}{2}$ rk after +5)	n involving	Cambridge con
$\frac{6}{\sqrt{4x+1}} = 2 \rightarrow x = 2, y = 14$ Eqn $\rightarrow y - 14 = -\frac{1}{2}(x-2)$ or $2y+x=30$ $\rightarrow (0, 15)$ and $(30, 0)$	A1√ M1 A1 [4]	Correct metho	od for line		
7 (i) $2^{2x} = 2^{x+2} + 5$ $2^{2x} = u^2$ $2^{x+2} = 4u$ Solution of quadratic $u^2 = 4u + 5$ $2^x = 5$ $\rightarrow x = \lg 5 \div \lg 2$ $\rightarrow x = 2.32$ (ii) $2 \log_9 3 + \log_5 (7y - 3) = \log_2 8$. $2^{x} / 2 + \dots = 3$ $\log_5 (7y - 3) = 2$ $(7y - 3) = 25$ $\rightarrow y = 4$	B1 B1 M1 M1 A1 [5] B1 B1 M1 A1 [4]	co – loses if m given. For $\frac{1}{2}$ For RHS = 3 From \log_5 to 5	o x by correct report from x by correct report one $S^p = k$. co	nethod answer	
8 (a) $f(1) = 1-11+k-30 \rightarrow k-40$ $f(2) = 8-44+2k-30 \rightarrow 2k-66$ f(1) = 4f(2) $\rightarrow k = 32$ (b) $x^3 - 4x^2 - 8x + 8 = 0$ Tries for a first solution $\rightarrow x = -2$ Divides by $(x - \text{his first solution})$ $\rightarrow x^2 - 6x + 4 = 0$ $\rightarrow x = \frac{6 \pm \sqrt{20}}{2} \rightarrow 3 \pm \sqrt{5}$	M1 A1 M1 A1 [4] M1 A1 M1 DM1 A1	Both correct, the Linked + solution co Search shown Correct method	tion – allow if 4 and for $M, x = -2$ and for soln of quadrates	1 on LHS gets M1A1.	

Page 6	Mark Scheme	Syllabus	er
	IGCSE – October/November 2007	0606	

•	ge 6 Mark Scheme Syllabus IGCSE – October/November 2007 0606		
IGCSE - OCTOBE	:i/idoveilibe	51 2001 0000	
y 14.4 10.8 11.2 12.6 14.4 xy 29 43 67 101 144 xy 29 43 67 101 144 x² 4 16 36 64 100	M1 A1 [2]	Syllabus er 2007 0606 Knows what to do. Mark from graph – 5 points are in line.	
(ii) Gradient 1.2 (±0.1) 'y' intercept (±2)	B1 B1	co co	
$\rightarrow y = 1.2x + \frac{24}{x}$	M1 A1 [4]	xy = (their grad)x + (their intercept)	
(iii) From graph $xy = 83 \rightarrow x^2 = 49$ Valid method to obtain y y = 11.6 - 12.2	M1 M1 A1 [3]	Reads on vertical axis at 83 Valid method to obtain <i>y</i> co	
10 (i) BC = 2(10sin0.4) = 7.79	M1 A1 [2]	Any correct method – cos rule ok.	
(ii) $\angle ABC = \frac{1}{2}(\pi - 0.8) = 1.17 \text{ rads}$ Arc $CD = 7.79 \times 1.17$, Arc $BC = 10 \times 0.8$ $\rightarrow P = \text{sum of the arcs} + BD (=7.79)$ $\rightarrow P = 24.9$	B1 M1 M1 A1 [4]	Anywhere in the question. Use of $s=r\theta$ in either arc. Overall plan – arc CD + arc BC + BD co.	
(iii) Area sector <i>BDC</i> = ½(7.79) ² ×1.17	M1	Use of $A=\frac{1}{2}r^2\theta$ for sector BDC	
Area segment on $BC = \frac{1}{2}.10^2(0.8 - \sin 0.8)$	B1	B1 for $0.5(10)^2$ 0.8	
→ Shaded area = 39.6 or 39.7	B1 A1 [4]	B1 for $0.5(10)^2 \sin 0.8$	
11 EITHER (i) $y = xe^{2x}$ $d/dx(e^{2x}) = 2e^{2x}$ $\rightarrow dy/dx = e^{2x} + 2x e^{2x}$	B1 M1A1	Anywhere – even if product not used Use of correct formula for "uv". co	
$\to d^2 y/dx^2 = 2e^{2x} + 2e^{2x} + 4xe^{2x}$	M1A1 [5]	Use of product formula again. co.	
(ii) $dy/dx = 0$ when $1+2x = 0 \rightarrow x = -\frac{1}{2}$	M1 A1	Sets his dy/dx to 0 and tries to solve.	
$\rightarrow y = -\frac{1}{2}e^{-1} = -\frac{1}{2e}.$	A1 [3]	co – ag – beware fortuitous results.	
(iii) If $x = -\frac{1}{2} \rightarrow +\text{ve result}$ $\rightarrow \text{ Minimum}$ (or gradient goes $-,0,+$)	M1 A1	Looks at sign. Correct deduction from correct <i>x</i> . (or by any other valid method)	
(or y value to left or right of $(-\frac{1}{2}) > -\frac{1}{2e}$)	[2]		

trapapers.com

Page 7	Mark S IGCSE – Octobe	Scheme er/Novembe	er 2007	Syllabus 0606	A. Papacer
11 OR					andride
(i) $d/dx(\ln x) = 1$ $\frac{d}{dx} \left(\frac{\ln x}{x^2} \right) = -\frac{1}{2}$		B1 M1 A1 [3]		ven if quotient i quotient formu	

M1

	-	_	_
-1	1	\mathbf{n}	
		U	г

(i)
$$d/dx(\ln x) = 1/x$$

 $\frac{d}{dx} \left(\frac{\ln x}{x^2} \right) = \frac{x - 2x \ln x}{x^4} = \frac{1 - 2 \ln x}{x^3}$

(ii)
$$dy/dx = 0 \rightarrow \ln x = \frac{1}{2} \rightarrow x = \sqrt{e}$$

 $\rightarrow y = \ln(\sqrt{e}) \div e = \frac{1}{2e}$.

M1 A1 Sets his dy/dx to 0 and tries to solve. Α1 co - ag - beware fortuitous results.

(iii) $\frac{\ln x}{x^2} = \int \left(\frac{1}{x^3}\right) dx - \int \frac{2\ln x}{x^3} dx$

Recognition that integration is the reverse of differentiation.

$$\int \frac{\ln x}{x^3} dx = \frac{1}{2} \times \left[\int \left(\frac{1}{x^3} \right) dx - \frac{\ln x}{x^2} \right]$$

$$\rightarrow = \frac{1}{2} \left(\frac{x^{-2}}{-2} - \frac{\ln x}{x^2} \right) + c$$

В1 B1 for ½. B1 for $(x^{-2}) \div (-2)$ В1 All ok including +c. [4]

DM1 for quadratic equation. Equation must be set to 0 if using formula or factors.

Formula.

Factors

[3]

Must be correct

Must attempt to put quadratic into 2 factors.

- ignore arithmetic and algebraic slips.

Each factor then equated to 0.