CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	Mark Scheme	Syllabus	Paper			
	Ŭ	Cambridge IGCSE – October/Noven	nber 2014		0606	11	
1		dv 16		с. <i>н</i>	1:00		
-		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{16}{x^2}$	M1 A1	for attempt to differentiate all correct for equating $\frac{dy}{dx}$ to zero and an attempt to solve for <i>x</i> .			
		When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$,	DM1				
		x = 2, y = 12	A1	A1 for bot	A1 for both, but no extra solutions		
2	(a)		B1	for correct	shape		
			B1		alue of 2, star ang at (180°,		
		-4	B 1	for min va	lue of –4		
	(b) (i)	4	B 1	must be po	ositive		
	(ii)	$60^{\circ} \text{ or } \frac{\pi}{3} \text{ or } 1.05 \text{ rad}$	B1				
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$	M1, A1	M1 for $(x$	$(+3)^{\frac{1}{2}}$, A1 fo	r $4(x+3)^{\frac{1}{2}}$	
		$10 = 4\left(9^{\frac{1}{2}}\right) + c$ $c = -2$	M1		ct attempt to om an attemp		
		c = -2 $y = 4(x+3)^{\frac{1}{2}} - 2$ $6 = 4(x+3)^{\frac{1}{2}} - 2$	A1	Allow A1	for $c = -2$		
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ x = 1	A1 ft		titution into <i>i</i> to obtain <i>x</i> ; m		

F	Page 3	Mark Scheme		Syllabus Paper			
		Cambridge IGCSE – October/Nov	ember 2014	0606 11			
4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7			
	(ii)	(5y-2)(y-1) = 0	M1	for solution of quadratic equation from (i)			
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$			
		x = -0.569	A1	must be evaluated to 3sf or better			
		y = 1, x = 0	B1				
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate			
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$			
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent			
		(y=2x-1)	A1	allow equation unsimplified			
	(ii)	Mid-point (5, 9)	B1	for midpoint from given coordinates			
		9 = 2(5) - 1	B1	for checking the mid-point lies on tangent			
		Alternative Method: Tangent equation $y = 2x - 1$					
		Equation of line joining (-2, 16) and (12, 2) y = -x + 14					
		Solve simultaneously $x = 5, y = 9$	B1	for a complete method to find the coordinates of the point of			
		Mid-point (5, 9)	B1	intersection for midpoint from given coordinates			
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2\dots$	B1	for 240 p^2 or 240 p^2x^2 or ${}^{6}C_2 \times 2^4 \times (px)^2$ or ${}^{6}C_2 \times 2^4 \times p^2$			
				or ${}^{6}C_{2} \times 2^{4} \times p^{2}x^{2}$			
		$240p^2 = 60$	M1	for equating <i>their</i> term in x^2 to 60 and attempt to solve			
		$p = \frac{1}{2}$	A1				
	(ii)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for 192 <i>p</i> , 96 or $192 \times their p$			
		Coefficient of x^2 is $180-192p$ = 84	M1 A1	for 180 – 192 <i>p</i>			

F	Page 4	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/Noven	1ber 2014		0606	11	
7	(i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$			
	(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix			
		$= \begin{pmatrix} -a & b\\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a}\\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allo unsimplified)			
		$= \begin{pmatrix} 0 & 1\\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each co must be sin	prrect pair of mplified	elements,	
8	(i)	$\overline{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$ so at $P, x = 1$	B1	for convin	cing argumer	t for $x = 1$	
		$y = 3 + \frac{1}{4}(16), y = 7$	B1	for $y = 7$			
	(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient $= -\frac{3}{4}$	M1	for finding perpendicu	gradient of alar		
		Perp line: $y - 7 = -\frac{3}{4}(x - 1)$	M1	for equation through the	on of perpend eir <i>P</i>	icular	
		(3x+4y=31)	A1	Allow uns	implified		
	(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft	ft on their be implied	perpendicula	r line, may	
			M1	for any val area of the use of <i>thei</i>	lid method of correct trian $r Q$; must be	gle, allow	
		Area $AQB = 12.5$	A1	(0,q).			

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

9	(i)	$\log y = \log y$	ga + x le	ogb					B 1	for the statement, may be seen or		
		x	2	2.5	3	3.5	4			implied in later work,		
		lg y	1.27	1.47	1.67	1.87	2.07					
		lny	2 2.93	2.5 3.39	3 3.84	3.5 4.31	4 4.76					
		logy	1						M1	for attempt to draw graph of x against log y		
		e					x		A2,1,0	-1 each error in points plotted		
(ii)		Gradient = $\log b$ $\lg b = 0.4$ or $\ln b = 0.92$							DM1	for attempt to find gradient and equate it to log <i>b</i> , dependent on M1		
		b = 2.5 (allow 2.4 to 2.6) Intercept = log a lg a = 0.47 or $ln a = 1.10a = 3$ (allow 2.8 to 3.2)							A1	in (i)		
									DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the		
									A1	line, dependent on M1 in (i)		
		Alternative method: Simultaneous equations may be used provided points that are on the plotted straight line are used.			DM1 DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations, dependent on M1 in (i)						
		a = 3 (allowing b) (allowing b) (allowing b) (allowing b) (allowing b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)				A1 A1	A1 for each		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

				1
10	(a) (i)	360	B 1	
	(ii)	60	B 1	
	(iii)	36	B 1	
	(b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$	B1, B1	B1 for each, allow unevaluated with no extra terms
		56×792 = 44352	B1	Final answer must be evaluated and from multiplication
	(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
		Need ${}^{16}C_6 = 8008$	A1	for 8008
		Alternative Method		
		$\binom{6}{6} \times \binom{6}{6} \times \binom{6}{6} \times \binom{6}{5} \times \binom{6}{10} \dots \binom{6}{6} \times \binom{6}{6} \times \binom{6}{6}$	M1	for at least 5 of the 7 cases, allow
		(- 26 + 200) + (- 25 + 210) + (- 26 + 20) + (- 26 + 20) + (- 26 + 20) + (- 26 + 20) + (- 26 + 20) + (- 26 + 20) + (A1	unsimplified
		1+00+075+2400+5150+1512+210-8008		
11	(a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be
				implied
		$\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$		
		Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
		$x = 30^\circ, 90^\circ$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
		and $\sin 3x = \frac{1}{2}, \ 3x = 30^{\circ}, \ 150^{\circ}$	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
	(b)	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
		$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with $\sec\left(y+\frac{\pi}{2}\right)$ correctly
		2 3 3	DM1	for correct order of operations,
		π 5 π (0.524.2.52)		must not mix degrees and radians
		so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

12 (i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
(iii)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
	$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
	$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
(v)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
	$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	equating like vectors
	$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow } 0.375$	A1	