CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B1	
(iii) (a)		B 1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y = 3$ and lowest value at $y = -1$ completely correct graph
(iv)	3	B 1	
2 (i)	$\tan \theta = \frac{\left(8 + 5\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}$ $= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}$ $= 1 + 2\sqrt{2} \text{cao}$	M1 A1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

Page 3	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	0606 13	
(ii)	$\sec^2 \theta = 1 + \tan^2 \theta$		
	$=1+(-1+2\sqrt{2})^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with <i>their</i> answer to (i)
	$=1+1-4\sqrt{2}+8$	DM1	attempt to simplify, must be convinced no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $(-1+2\sqrt{2})^2$ as 3 terms
	Alternative solution:		
	$AC^{2} = \left(4 + 3\sqrt{2}\right)^{2} + \left(8 + 5\sqrt{2}\right)^{2}$		
	$=148+104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$=\frac{148+104\sqrt{2}}{\left(4+3\sqrt{2}\right)^2}\times\frac{34-24\sqrt{2}}{34-24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
3 (i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
(ii)	$\left(64+192x^2+240x^4\right)\left(1-\frac{6}{x^2}+\frac{9}{x^4}\right)$	B1	expansion of $\left(1-\frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using <i>their</i> (i)
	= 1072	A1	

	Page 4				Syllabus	Paper
		Cambridge IGCSE – May/June 2015			0606	13
4	(a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8\\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each ind	correct eleme	nt
	(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1		$I^{1} = \mathbf{I}$ and an a east one equat	-
		Any 2 equations will give $a = 2, b = 4$	A1,A1			
		Alternative method 1: $\begin{pmatrix} 5 \\ -1 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$				
		$\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$	M1		empt to obtair n of at least o	
		Compare any 2 terms to give <i>a</i> = 2, <i>b</i> = 4 Alternative method 2:	A1,A1			
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning a	and attempt a	t inverse
5		$3x - 1 = x(3x - 1) + x^{2} - 4 \text{ or}$ $y = \left(\frac{y + 1}{3}\right)y + \left(\frac{y + 1}{3}\right)^{2} - 4$				
		$4x^2 - 4x - 3 = 0$ or $4y^2 - 4y - 35 = 0$	M1	^	attempt to ob	otain an
		(2x-3)(2x+1)=0 or $(2y-7)(2y+5)=0$	DM1	equation in forming a 2 and attemp	3 term quadra	tic equation
		leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and 7 5	A1	<i>x</i> values		
		$y = \frac{7}{2}, y = -\frac{5}{2}$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	A1	y values	. 11	
		Perpendicular gradient = $-\frac{1}{3}$	B1 M1		nt, allow any	
		Perp bisector: $y - \frac{1}{2} = -\frac{1}{3}\left(x - \frac{1}{2}\right)$	M1 M1	of the perp	endicular, usi e equation the	•
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		midpoint; i perpendicu	nust be convi ilar gradient.	
		(3y + x - 2 - 0)	A1	allow unsit	mplified	

	Page 5	Mark Scheme		S	Syllabus	Paper	
		Cambridge IGCSE – May/June 2015			0606	13]
6	(i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use of	feither $f\left(\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$ or f(1)	
		leading to $a + 4b = 46$ f(1) = $a - 15 + b - 2 = 5$		paired correct	tly		
		leading to $a + b = 22$	A1	both equation unsimplified)	· · · ·	allow	
		giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution A1 for both <i>a</i>			
	(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid a either observa division.			
	(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4a$	ас		
		$b^2 < 4ac$ $16 < 56$	A1	correct conclucorrect $g(x)$ of			
		$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	M1	differentiation product)	n of a quot	ient (or	
7	(i)	$\frac{dy}{dx} = \frac{(4x + 2)}{(x-1)^2}$	B1 A1	correct differe all else correc		f $\ln(4x^2+3)$	3)
		When $x = 0$, $y = -\ln 3$ oe	B1	for y value			
		$\frac{dy}{dx} = -\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attempt normal	to obtain g	gradient of t	he
		normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at nor using a perper		ion must be	
		or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao (Allow $y = 0.91x - 1.1$)	A1	annig a perper			
	(ii)	when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt	at area		
		Area = ±0.66 or ±0.67 or awrt these or $\frac{1}{2}(\ln 3)^3$	A1				

Page 6	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	e 2015	0606 13
8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y-5}$ g ⁻¹ (x) = -2 + $\sqrt{x-5}$ Domain of g ⁻¹ : x ≥ 9	M1 A1 B1	attempt to obtain the inverse function Must be correct form for domain
	Alternative method: $y^{2} + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to use quadratic formula and find inverse must have $+ \text{ not } \pm$
(iii)	Need g($3e^{2x}$) $(3e^{2x} + 2)^2 + 5 = 41$ or $9e^{4x} + 12e^{2x} - 32 = 0$	M1 DM1	correct order correct attempt to solve the equation
	$(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2}\ln\frac{4}{3}$	M1	dealing with the exponential correctly in order to reach a solution for x
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$ Alternative method:	A1	Allow equivalent logarithmic forms
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$ leading to $3e^{2x} = 4$, so $x = \frac{1}{2}\ln\frac{4}{3}$	M1 DM1	correct use of g^{-1} dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x}
		M1 A1	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each

	Page 7	Mark Scheme		Syllabus Paper		
		Cambridge IGCSE – May/June	2015	0606 13		
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation		
		When $x = 0$, for curve $\frac{dy}{dx} = 3$,				
		gradient of line also 3 so line is a tangent.	A1	comparing both gradients		
		Alternate method:				
		$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous equations		
		leading to $x^2 = 0$, so tangent at $x = 0$	A1	obtaining $x = 0$		
	(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve		
		$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each		
	(iii)	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10dx$	B1	area of the trapezium		
		$= \frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x\right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by		
		$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$	A1 DM1	integration integration all correct correct application of limits (must be using <i>their</i> 3 from (ii) and 0		
		= 24.7 or 24.8	A1	(must be using men 5 nom (n) and 0)		
		Alternative method:				
		Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$	B1	correct use of ' $Y-y$ '		
			M1	attempt to integrate		
		$= \int_{0}^{3} -x^{3} + 5x^{2} dx$	A1	integration all correct		
		$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits		
10	(a)	$\sin^2 x = \frac{1}{4}$				
		$\sin x = (\pm)\frac{1}{2}$	M1	using $\csc x = \frac{1}{\sin x}$ and obtaining		
		$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1,A1	sin $x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions		

Page 8	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	e 2015	0606 13
(b)	$(\sec^2 3y - 1) - 2 \sec 3y - 2 = 0$ $\sec^2 3y - 2 \sec 3y - 3 = 0$ $(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$ $3y = 180^\circ, 540^\circ 3y = 70.5^\circ, 289.5^\circ, 430.5^\circ$ $y = 60^\circ, 180^\circ, 23.5^\circ, 96.5^\circ, 143.5^\circ$	M1 M1 M1 A1,A1 A1	use of the correct identity attempt to obtain a 3 term quadratic equation in sec 3y and attempt to solve dealing with sec and 3y correctly A1 for a correct pair, A1 for a second correct pair, A1 for correct 5 th solution and no other within the range
	Alternative 1: $\sec^2 3y - 2\sec 3y - 3 = 0$ leading to $3\cos^2 3y + 2\cos 3y - 1$ $(3\cos y - 1)(\cos y + 1) = 0$	M1 M1 M1	use of the correct identity attempt to obtain a quadratic equation in cos 3y and attempt to solve dealing with 3y correctly A marks as above
	Alternative 2: $\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the correct identity, $\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, then as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$ $z = \frac{2\pi}{3}, \frac{5\pi}{3} \text{ or } 2.09 \text{ or } 2.1, 5.24$	M1 A1,A1	correct order of operations A1 for a correct solution A1 for a second correct solution and no other within the range