CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

Abbreviations

Г

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

	Page 3	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Nove	15 0606 13	
3	(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elements correct, B1 for 5 elements correct
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X^2 B1 for 3 correct elements in X^2
		-24 = 6m or $-8 = 2m$ giving $m = -4$	B1	For $m = -4$ using correct I
		28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete method to obtain <i>n</i>
		$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area
		$\frac{1}{2} \left(4\sqrt{3} + 1 \right) \times BC = \frac{47}{2}$ $BC = \frac{47}{\left(4\sqrt{3} + 1 \right)} \times \frac{\left(4\sqrt{3} - 1 \right)}{\left(4\sqrt{3} - 1 \right)}$	M1	correct rationalisation
		$BC = 4\sqrt{3} - 1$	A1	Dependent on all method being seen
		Alternative method		
		$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$	B1	
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1	
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations
	(ii)	$\left(4\sqrt{3}+1\right)^2+\left(4\sqrt{3}-1\right)^2$		
		$= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$	B1FT	6 correct FT terms seen
		$AC^{2} = 98$ $AC = 7\sqrt{2}$ or $p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

Page	4 Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/Nov	15 0606 13	
5	When $x = \frac{\pi}{4}, y = 2$	B1	<i>y</i> = 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{sec}^2 x$	B1	$5 \sec^2 x$
	When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from differentiation
	Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	$y - their 2 = -\frac{1}{their 10} \left(x - \frac{\pi}{4} \right)$
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimplified
6 (i)	-4 -2 2 4 6 8	B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
(ii)	(2,16)	M1 A1	(2, ±16) seen or (2, k) where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
(iii)	k = 0	B1	
	<i>k</i> >16	B1	

	Page 5	Mark Scheme	Syllabus	Paper		
		Cambridge IGCSE – October/November 2015			0606	13
7		$\frac{dy}{dx} = 2\sin 3x (+c)$ $4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	B1 M1	$2\sin 3x$ finding const $\frac{dy}{dx} = k\sin 3x$ $\frac{dy}{dx} = 4\sqrt{3} \text{ ar}$	+c making	use of
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with a	$c = 5.20 \text{ or } \sqrt{2}$.7
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integratio	on of <i>their k</i> s	$\sin 3x$
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding const	tant d for $k co$	$\cos 3x + cx + d$
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow y = -0.667 co or better	$\cos 3x + 5.20x$	-0.577π
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$				
		$k = \frac{1}{4}$	B1			
		p = 112 $q = 28$	B1FT B1FT	FT 1792 mu FT 1792 mu		
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term	seen	
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to -672	DM1 A1	Term selecter evaluated	d and 2^3 and	${}^{9}C_{3}$ correctly

[Pag	je 6	Mark Scheme		Syllabus Paper
[Cambridge IGCSE – October/November 2015		015 0606 13	
9	(a)	(i)	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$4!(\times 2)$ or $4 \times 3!(\times 2)$ oe
			or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe
			$2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$	A1	A1 for 48
		(ii)	$5! - 48 \text{ or } 6 \times 2 \times 3!$	M1	5! - their answer to (i) or for $6 \times 2 \times 3$
			72	A1	or for $6 \times 2 \times 3$
	(b)	(i)	3003	B1	
		(ii)	3003 - 6 - 135	M1	<i>their</i> answer to (i) $-6 - {}^{6}C_{4} \times 9$
				B1	135 subtracted
			2862	A1	
			or		
			$2M \ 3W = 720$ $3M \ 2W = 1260$	M1	complete correct method using 4 cases, may be implied by working. Must have
			4M 1W = 756		at least one correct
			5M = 126	B1	any 3 correct
			2862	A1	

[Page 7	Mark Scheme Cambridge IGCSE – October/November 2015				Paper
						13
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$	M1	correct cosing statement for oe		ent or correct equating areas
		or $ABC = \pi - \sin^{-1} \frac{10\sqrt{11}}{36}$				
		<i>ABC</i> = 1.9702	A1	1.9702 or bet	tter	
	(ii)	XY = 2	B1	for <i>XY</i> (may be implied by later we allow on diagram)		y later work,
		Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe	B1	correct arc le	ngth (unsimp	lified)
		Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	M1 A1	their $2 + 2 \times$	$6 \times their and$	gle C
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area us area of ΔAB of AC, or (Δ s	M where M is	s the midpoint <i>Y</i>) or $\triangle ABC$
		= 4.50 or 4.51 or better	A1	Answers to 3	sf or better	

	Page 8	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/No	0606 13	
11		$x^{2} - 2x - 3 = 0$ or $y^{2} - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
		leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.
		Midpoint (1, 3)	B1cao	midpoint
		(Gradient - 1) Perpendicular bisector $y = 4 - x$ Meets the curve again if $x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$ leading to $x = -5 \pm 2\sqrt{10}, y = 9 \mp 2\sqrt{10}$	M1 M1 A1,A1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i> midpoint substitution and simplification to obtain a three term quadratic equation in one variable. A1 for each 'pair'
		$CD^{2} = (4\sqrt{10})^{2} + (4\sqrt{10})^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct coordinates.
		$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.

[Page 9	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/Nov	ember 20	0606 13
12	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{x+y} , 128 as powers of 2 and 9^{2y-x} , 27^{y-4} as powers of 3
		2x-1+2(x+y)=7 oe 2(2y-x)=3(y-4) oe leading to $x = 4, y = -4$	A1 A1 A1	Correct equation from correct working Correct equation from correct working for both
		Example of Alternative method Method mark as above 2x - 1 + 2(x + y) = 7	M1 A1	As before One of the correct equations in x and y
		leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$ $(2(8-4x)) \qquad ((8-4x))$		
		Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unsimplified, equation in <i>x</i> or <i>y</i> only Both answers
	(b)	$(2(5^z)-1)(5^z+1)=0$ leading to 2.5 ^z =1 $(5^z = -1)$	M1 A1	solution of quadratic correct solution
		$5^{z} = 0.5$	DM1	correct attempt to solve $2.5^z = k$, where <i>k</i> is positive
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	must have one solution only