CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 22, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Guidance
1 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-9)^{-\frac{3}{2}}$	M1	If M0 then SC1 for the correct answer with an extra term.
	$k = -\frac{5}{2}$ isw	A1	condone $5 \times -\frac{1}{2}$
(ii)	$\delta y = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=13}\right) \times h$	M1	
	-0.3125 <i>h</i> oe	A1	
2	$\begin{array}{c c} & & & \\ & & \\ & & \\ \hline & & \\$	B3,2,1,0	 B2 for <i>C</i> as a proper subset of <i>A</i> <i>A</i> and <i>B</i> with an intersection <i>B</i> and <i>C</i> mutually exclusive Or B1 for any two of the these and B1 for the number of elements correctly placed
	5	B1FT	FT their 5
3	Integrates $9x^2 - 3x^{-2}$	M1	condone one rearrangement error
	$(y=)\frac{9x^3}{3} - \frac{3x^{-1}}{-1}(+c)$	A1	
	Substitute $x = 1$ and $y = 7$ into <i>their</i> expression with 'c'	M1	<i>their</i> expression must be from an attempt to integrate
	$y = 3x^3 + 3x^{-1} + 1$ oe isw	A1	condone $y = 3x^3 + 3x^{-1} + c$ and $c = 1$ seen, isw

Page	3 Mark Scheme Cambridge IGCSE – March 2016		Syllabus Paper 0606 22	
Question	Answer	Marks	Guidance	
4 (a)	a = 10 b = 6 c = 4 or $10\cos 6x + 4$	B2,1,0	for B1 allow correct FT of <i>c</i> from <i>a</i> e.g. <i>their</i> $c = 14 - their a$	
(b)	y 1 0 45° 90° 135° 180° x -2 -5	B3,2,1,0	Correct shape; two cycles; both maximum at 1 and minimum at -5 ; starting at $(0, -2)$ and ending at $(180, -2)$	
5 (i)	$2187 + 5103kx + 5103k^2x^2$	B3	1 for each term; ignore extra terms	
(ii)	$2(5103k) = 5103k^2$	M1	must not include x , x^2	
	<i>k</i> = 2	A1	A0 if $k = 0$ also given as a solution	
6	$\frac{x}{1+3\sqrt{3}} = \frac{5-\sqrt{3}}{6+2\sqrt{3}} \text{ oe soi}$	M1		
	$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}}$ oe	M1		
	$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}} \times \frac{6-2\sqrt{3}}{6-2\sqrt{3}}$	M1		
	p = -27, q = 23 isw	A1 + A1	allow $(x=)\frac{-27+23\sqrt{3}}{6}$	

Г	Page 4	Mark Scheme		Syllabus Paper
	U = -	Cambridge IGCSE – March 2016		0606 22
Ques	stion	Answer	Marks	Guidance
7 (a	ı)	$ \begin{pmatrix} 4 & 6 & 8 \\ -2 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 18 & 3 & 6 \\ 21 & -6 & 3 \end{pmatrix} $	M1	for attempt to multiply and subtract
		$\begin{pmatrix} -14 & 3 & 2 \\ -23 & 6 & 1 \end{pmatrix}$	A1	
(b) (i)	$-\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$ oe	B1 + B1	1 mark for $-\frac{1}{2}$ and 1 mark
				for $k \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$
	(ii)	Valid method	M1	$\mathbf{X}\mathbf{D}^{-1}\mathbf{D}=\mathbf{C}\mathbf{D}$
		$\begin{pmatrix} -8 & -6 \\ 13 & 7 \end{pmatrix}$	A2,1,0	-1 each error
				If M0 then SC1 for
				$\mathbf{DC} = \begin{pmatrix} 4 & 3 \\ -14 & -5 \end{pmatrix}$
8 (i)	Eliminate x (or y)	M1	$3(2y-2)^{2} + (2y-2)y - y^{2} = 12$
	,			$3x^{2} + x\left(\frac{x+2}{2}\right) - \left(\frac{x+2}{2}\right)^{2} = 12$
		$13y^2 - 26y = 0$ or $\frac{13}{4}x^2 - 13 = 0$ oe	A1	
		$13y(y-2)$ or $x^2 = 4$	M1	
		$x = -2, \qquad x = 2$	A1	or for $(-2, 0)$ or $(2, 2)$ from correct
		y=0 $y=2$ isw	+ A1FT	working
		y = 0 $y = 2$ isw		FT <i>their x</i> or <i>y</i> values to find <i>their y</i> or <i>x</i> values; or A1 for (-2, 0) and (2, 2)
(ii)	their $m_{AB} = \frac{1}{2}$ or their $m_{BC} = -2$ soi	M1	may be unsimplified or Pythagoras' theorem correctly applied to <i>their</i> $(0, -2)$, <i>their</i> $(2, 2)$ and $(0, 6)$
		use of $(m_{AB}) \times (m_{BC}) = -1$ and conclusion	A1	or use of $h^2 = a^2 + b^2$ and conclusion

Γ	Page 5	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – March 2016		0606 22
Que	estion	Answer	Marks	Guidance
9 (i)	$RT = \frac{1}{\tan \theta}$	B1	or $RT = \cot \theta$
		$RS = \frac{1}{\sin \theta}$	B1	or $RS = \csc \theta$
		$x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta}$ oe or $x = 1 - \frac{\cot\theta}{2} - \frac{\csc\theta}{2}$ oe	B1FT	FT <i>their RT</i> and <i>their RS</i> , provided both are functions of trig ratios
(i	i)	$A = x + \frac{1}{2}\cot\theta$ oe soi	M1	
		correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$	A1	
(ii	i)	$\csc \theta = \frac{2\sqrt{3}}{3}$ oe	M1	equivalent must be exact
		$\theta = \frac{\pi}{3}$ cao	A1	implies M1
10 (a) (i)	$(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$	M1	implied by $\alpha + \beta = 15$ or $2\alpha - 24 = -20$
		$\alpha = 2$	A1	
		$\beta = 13$	A1	
	(ii)	$\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe	M1	
		$\frac{15\mathbf{i}-20\mathbf{j}}{25}$ oe	A1FT	FT <i>their</i> $\alpha + \beta$ provided non-zero
0	b)	$\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB}$ or $\overrightarrow{OC} = OB + (1 - \lambda)\overrightarrow{BA}$	B1	
		$[\overrightarrow{OC} =] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or}$ $[\overrightarrow{OC} =] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$	M1	
		$[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$	A1	
(c)	$[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ $\frac{2}{\mu + 3} = \frac{\mu}{9}$	M1	or multiplies one of the vectors by a general scale factor and finds a pair of simultaneous equations to solve
		Solves $\mu^2 + 3\mu - 18 = 0$	M1	or solves <i>their</i> correct equation to find <i>their</i> scale factor and attempts to use it to find μ
		$\mu = 3$	A1	A0 if -6 not discarded

Page	6 Mark Scheme		Syllabus Paper
	Cambridge IGCSE – March 2016		0606 22
Question	Answer	Marks	Guidance
11 (i)	$\frac{dy}{dx} = \frac{(x^2 + 1)(1) - (x)(2x)}{(x^2 + 1)^2} \text{oe}$	M1*	Attempts to differentiate using the quotient rule
		A1	correct; allow unsimplified
	$their(1-x^2) = 0$	M1 dep*	
	x = 1, x = -1	A1	from correct working only
	y = 0.5, $y = -0.5$ oe	A1	from correct working only
			or A1 for each of $(1, 0.5)$, (-1, -0.5) oe from correct working;
			unsupported answers do not score
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\left(x^2+1\right)^2\right) = 2\left(x^2+1\right)\left(2x\right) \text{ soi}$	B1	$\frac{d}{dx}\left(x^4 + 2x^2 + 1\right) = 4x^3 + 4x$
	$\frac{d^2 y}{dx^2} = (x^2 + 1) \frac{(x^2 + 1)(their - 2x) - (their(1 - x^2))2(2x)}{(x^2 + 1)^4}$	M1	Applies quotient rule and factors out
	Correct completion to given answer $\frac{d^2 y}{dx^2} = \frac{2x^3 - 6x}{(x^2 + 1)^3}$	A1	
	When $x = 1$ their $\frac{d^2 y}{dx^2}\Big _{x=1} = \frac{2(1)^3 - 6(1)}{(1^2 + 1)^3}$ oe < 0 therefore maximum	B1FT	Complete method including comparison to 0; FT <i>their</i> first or second derivative
	When $x = -1$ their $\frac{d^2 y}{dx^2}\Big _{x=-1} = \frac{2(-1)^3 - 6(-1)}{((-1)^2 + 1)^3}$ or $x > 0$	B1FT	Complete method including comparison to 0; FT <i>their</i> first or
	therefore minimum		second derivative

Page 7	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – Marc	h 2016	0606 22
Question	Answer	Marks	Guidance
12 (i)	$9t^{2} - 63t + 90 = 0$ (9t - 18)(t - 5)	M1	
	showing that $t = 2$ is smaller value of t	A1	must see evidence of solving e.g. $t = 5$ and $t = 2$ or factors
(ii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t}$ attempted	M1	
	18(3.5) - 63 = 0 cao	A1	
(iii)	$\int (9t^2 - 63t + 90) \mathrm{d}t$	M1	
	$18(3.5) - 63 = 0 \text{ cao}$ $\int (9t^2 - 63t + 90) dt$ $(s =) \frac{9t^3}{3} - \frac{63t^2}{2} + 90t \text{ isw}$	A2,1,0	-1 for each error or for $+c$ left in
(iv) (a)	$(s =)\frac{9(2)^3}{3} - \frac{63(2)^2}{2} + 90(2)$	M1	or $\left[\frac{9t^3}{3} - \frac{63t^2}{2} + 90t\right]_0^2$ FT their (iii)
	78 [m]	A1	
(b)	$(s =)\frac{9(3)^3}{3} - \frac{63(3)^2}{2} + 90(3) = 67.5$	M1	FT their (iii)
	<i>their</i> 78 + 10.5 = 88.5 [m]	A1FT	