

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 1 0606/13 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	13

Abbreviations

awrt answers which round to

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied
- www without wrong working

Question	Answer	Marks	Part Marks
1		B1 B1 B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the <i>x</i> -axis for a complete 'curve' with all low points on the <i>x</i> -axis and all high points on $y = 2$ for a complete 'curve' meeting the <i>x</i> -axis at $x = 30^{\circ}$, 90° , 150° only.
2	$=\frac{4m^2-9}{2m+3}$	M1	for multiplying each term by \sqrt{m} , using a common denominator of \sqrt{m} or for multiplying numerator and denominator by $2\sqrt{m} - \frac{3}{\sqrt{m}}$
	$=\frac{(2m-3)(2m+3)}{2m+3}$	A1	for a correct expression that will cancel $\frac{(2m-3)(2m+3)}{2m+3}, \frac{(4m^2-9)(2m-3)}{(4m^2-9)}$ $\frac{(2m-3)(2m+3)(2m-3)}{(2m+3)(2m-3)}, \text{ or equivalents}$
	= 2m - 3	A1	for $2m-3$ or $A=2, B=-3$
	Alternative Method $(4m\sqrt{m} - \frac{9}{\sqrt{m}})$ $= (2\sqrt{m} + \frac{3}{\sqrt{m}})(Am + B)$	M1	for correct expansion
	Comparing coefficients 2A = 4, 3A + 2B = 0, 3B = -9	A1 A1	for correct comparisons to obtain A and B for $2m-3$ or $A=2$, $B=-3$

Pa	age 3	Mark Sche Cambridge IGCSE – Octol	mber 2016	Syllabus 0606	Paper 13	_	
Question		Answer	Marks	rks Part Marks			
3	(i)	$3x^{2} - 2xp + (p+3) = 0$ (-2p) ² - 4×3×(p+3) ≥ 0 oe	M1	for obtaining a 3-term quadratic in the $ax^2 + bx + c(=0)$		the form	
			DM1	for correct substitution $b^2 - 4ac$ and use of d		and <i>c</i> into	د
		$p^2 \ge 3(p+3) \text{ or } 4p^2 - 12p - 36 \ge 0$ $p^2 - 3p - 9 \ge 0$	A1	for full correct workin used before division b line and penultimate li	y 4 and \geq us	-	
	(ii)	Correct method of solution $p^2 - 3p - 9 = 0$ leading to critical values	M1	for correct substitution for correct attempt to 1 sign error in either n	complete the		
		$p = \frac{3 \pm 3\sqrt{5}}{2}$	A1	for both correct critica	ll values		
		$p \leqslant \frac{3 - 3\sqrt{5}}{2}, \ p \geqslant \frac{3 + 3\sqrt{5}}{2}$	A1	for correct range			
4	(i)	$64 - 48x + 15x^2$	B3	for each correct term			
	(ii)	$(4 \times '64') + (2 \times '-48') + (3 \times '15')$	M1	for correctly obtaining coefficients in (i)	g three produc	ets using the	eir
			A1	for two correct out of (unsimplified) cao	three product	S	
		= 205 cao	A1	for 205 selected as fin	al answer		
5	(i)	$\log_9 xy = \log_9 x + \log_9 y$	M1	for use of $\log AB = \log AB$	$gA + \log B$		
		$= \frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$	M1	for correct method for log ₃ 9 should be seen a			n by
		$=\frac{\log_3 x}{2} + \frac{\log_3 y}{2} = \frac{5}{2}$					
		$\log_3 x + \log_3 y = 5$	A1	for dealing with 2 corr	rectly and 'fin	nishing off'	
		Alternative method					
		$\log_9 xy = \frac{5}{2}$	M1	for obtaining <i>xy</i> as a p	ower of 3		
		$xy = 9^{\frac{5}{2}} = 3^{5}$	M1	for correct use of log ₃			
		$\log_3 xy = 5$ $\log_3 x + \log_3 y = 5$	A1	for using law for logs answer	and arriving	at correct	

Page 4	Mark Sche Cambridge IGCSE – Octol	SyllabusPapermber 2016060613	
Question	Answer	Marks	Part Marks
(ii)	$\log_3 x (5 - \log_3 x) = -6$		
	$-(\log_3 x)^2 + 5\log_3 x = -6$	M1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic
	$\left(\log_3 x\right)^2 - 5\log_3 x - 6 = 0$	A1	for a correct quadratic equation in the form $ax^2 + bx + c = 0$
	leading to $\log_3 x = 6$, $\log_3 x = -1$	A1	for both solutions
		DM1	for method of solution of $\log_3 x = k$ or $\log_3 y = k$
	$x = 729, \ x = \frac{1}{3}$		
	$y = \frac{1}{3}, y = 729$	A1	for all x and y correct
6 (i)	$\frac{6x}{3x^2 - 11}$	M1 A1	M1 for $\frac{mx}{3x^2 - 11}$
(ii)	$p = \frac{1}{6}$	B1	FT for $p = \frac{1}{m}$
(iii)	$\frac{1}{6}\ln(3a^2 - 11) - \frac{1}{6}\ln 1 = \ln 2$	M1	for correct use of limits in $p \ln (3x^2 - 11)$ May be implied by following equation
	$\ln\left(3a^2-11\right)=\ln 2^6$	DM1	for dealing with logs correctly
	$3a^2 - 11 = 64$	DM1	for solution of $3a^2 - 11 = k$
	a = 5 only	A1	for 5 obtained from an exact method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question	Answer	Marks	Part Marks
7 (i)	$\ln y = \ln A + \frac{b}{x}$	B1	for equation, may be implied, must be using ln unless recovered
	Gradient: $b = -0.8$	B1	for $b = -0.8$ oe
	Intercept or use of equation: $\ln A = 4.7$ A = 110	B1 B1	for ln A = 4.7 oe, allow 4.65 to 4.75 for A = 110, allow 105 to 116 Allow A in terms of e
	Alternative Method	B1	for one equation
	$3.5 = \ln A + 1.5b$ and $1.5 = \ln A + 4b$ leading to $b = -0.8$ $\ln A = 4.7$ and $A = 110$	B1 B1 B1 B1	for $b = -0.8$ for $\ln A = 4.7$ for $A = 110$ or $e^{4.7}$
	Alternative Method $e^{1.5} = Ae^{4b}$ $e^{3.5} = Ae^{1.5b}$ leading to $b = -0.8$ and $A = 110$	B1 B1 B1 B1	for $e^{1.5} = Ae^{4b}$ or $4.48 = Ae^{4b}$ for $e^{3.5} = Ae^{1.5b}$ or $33.1 = Ae^{1.5b}$ for $b = -0.8$ for $A = 110$ or $e^{4.7}$
(ii)	When $x = 0.32, \frac{1}{x} = 3.125, \ln y = 2.2$	M1	for a complete method to obtain <i>y</i> , using either the graph, using <i>their</i> values in the equation for lny or
	$y = 9$ (allow 8.5 to 9.5) or $e^{2.2}$	A1	using <i>their</i> values in the equation for <i>y</i> .
(iii)	When $y = 20$, $\ln y = 3$, $\frac{1}{x} = 2.125$	M1	for a complete method to obtain <i>x</i> , using either the graph, using <i>their</i> values in the equation for lny or
	so $x = 0.47$ (allow 0.45 to 0.49)	A1	using <i>their</i> values in the equation for <i>y</i> .

Page 6	Mark Sche	Syllabus Paper	
	Cambridge IGCSE – Octob	er/Nove	mber 2016 0606 13
Question	Answer	Marks	Part Marks
8 (a) (i)	$\frac{\csc\theta}{\csc\theta - \sin\theta} = \frac{\frac{1}{\sin\theta}}{\frac{1}{\sin\theta} - \sin\theta}$	M1	for using $\csc \theta = \frac{1}{\sin \theta}$ and either attempt to multiply top and bottom by $\sin \theta$ or an attempt to combine terms in denominator.
	$=\frac{1}{1-\sin^2\theta} \text{ or } =\frac{\frac{1}{\sin\theta}}{\frac{(1-\sin^2\theta)}{\sin\theta}}$	DM1	for correct use of $1 - \sin^2 \theta = \cos^2 \theta$
	$=\frac{1}{\cos^2\theta}$ $=\sec^2\theta$	A1	for completing the proof
	Alternative Method using cosec $\frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$		
	$=\frac{\csc^2\theta}{\csc^2\theta-1}$	M1	for using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator.
	$=\frac{1+\cot^2\theta}{\cot^2\theta}$	DM1	for use of $1 + \cot^2 \theta = \csc^2 \theta$
	$= \tan^2 \theta + 1 = \sec^2 \theta$	A1	for completing the proof
(ii)	$\cos^{2} \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ or $\tan^{2} \theta = 3, \tan \theta = \pm \sqrt{3}$ or $\sin^{2} \theta = \frac{3}{4}, \sin \theta = \pm \frac{\sqrt{3}}{2}$	M1	for using (i) to obtain a value for $\cos^2\theta$, $\tan^2\theta$ or $\sin^2\theta$ and then taking the square root.
	$4 \qquad 2 \\ \theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$	A1 A1	for two correct values for two further correct values and no extras in range.
(b)	$\tan\left(x+\frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$	M1	for correct order of operations, can be implied by π
	$x = \frac{\pi}{6} - \frac{\pi}{4}, \ \frac{7\pi}{6} - \frac{\pi}{4}, \ \frac{13\pi}{6} - \frac{\pi}{4}$ $x = \left(-\frac{\pi}{12}\right), \ \frac{11\pi}{12}, \ \frac{23\pi}{12}$	A1,A1	$x = -\frac{\pi}{12}$ A1 for $x = \frac{11\pi}{12}$ A1 for $x = \frac{23\pi}{12}$
			If there are extra solutions in range in addition to the two correct ones then A1A0

Pa	ige 7	Mark Scheme Cambridge IGCSE – October/Nove		mber 2016	Syllabus 0606	Paper 13
Qu	estion	Answer	Marks	Part Marks		
9	(a) (i)	$^{18}C_5 = 8568 \mathrm{mmm}$	B1			
	(ii)	Either ${}^{10}C_4 \times {}^8C_1 = 1680$ ${}^{10}C_3 \times {}^8C_2 = 3360$ ${}^{10}C_2 \times {}^8C_3 = 2520$ ${}^{10}C_1 \times {}^8C_4 = 700$	B1 B2,1,0	for a correct plan B2 4 correct numbers B1 3 correct numbers		
		$C_1 \times C_4 = 700$ Total = 8260	B1	for correct total		
		their ${}^{18}C_5 - ({}^{10}C_5 + {}^{8}C_5)$ 8568 - (252 + 56) Total = 8260	B1 B1 B1 B1	for correct plan for 252 subtracted for 56 subtracted for correct total		
	(b) (i)	$^{10}P_6 = 151200$	B 1			
	(ii)	$4 \times {}^{8}P_{4} \times 3$ = 20160	M1 A1	for correct unsimplifie for correct numerical a		
	(iii)	Answer to (i) - ${}^{7}P_{6}$ =146160	M1 A1 A1	for correct plan for correct unsimplifie for correct numerical a		
		Alternative: 1 symbol: 45360 2 symbols: 75600 3 symbols: 25200	B2,1,0	B2 for all 3 correct B1 for 2 correct (out o	of 2 or 3)	
		Total: 146160	B 1	for correct sum		

Page 8	Mark S Cambridge IGCSE – O	SyllabusPapermber 2016060613	
Question	Answer	Marks	Part Marks
10 (i)	f (x) = $3x^2 - 4e^{2x}$ (+c) passing through (0,-3) $-3 = 3 \times 0 - 4e^0 + c$	M1 A1 A1 DM1	for one correct term for one correct term $3x^2$ or $-4e^{2x}$ for a second correct term with no extras for correct method to find <i>c</i> .
	$f(x) = 3x^2 - 4e^{2x} + 1$	A1	for correct equation
(ii)	f'(0) = -8	B1	for $m = \frac{1}{8}$
	Normal: $y+3=\frac{1}{8}x$	M1	for equation of normal using $m = \frac{1}{8}$
	8y + 24 = x $y = 2 - 3x$	DM1	for solving normal equation simultaneously with $y = 2 - 3x$ to get a value of x
	leads to $x = \frac{8}{5}$ oe	A1	for $x = \frac{8}{5}$, 1.6 oe
	Area = $=\frac{1}{2} \times 3 \times \frac{8}{5} = 2.4$ oe	B1	FT for a numerical answer equal to $\left \frac{1}{2} \times 3 \times \text{their } x\right $
11 (i)	a = 8t - 8 When $t = 3$, $a = 16$	B1 B1	for 8 <i>t</i> – 8 for 16
(ii)	0.5, 1.5	B1,B1	B1 for each
(iii)	$s = \frac{4}{3}t^3 - 4t^2 + 3t$	M1 A1	for at least two terms correct all correct
	when $t = \frac{1}{2}, s = \frac{2}{3}$	DM1	for calculating displacement when either $t = \frac{1}{2}$ or $t = \frac{3}{2}$
	when $t = \frac{3}{2}, s = 0$	DM1	for calculating displacement at $t = \frac{1}{2}$ and

total distance travelled = $\frac{4}{3}$

Alternative method

M1A1
DM1As before
DM1 for calculating displacement when t = 0.5 or
for calculating distance travelled between t = 0.5
and t = 1.5DM1DM1 for doubling distance travelled between
t = 0.5 and t = 1.5 or for adding that distance to
displacement at t = 0.5

A1 A1 for $\frac{4}{3}$ oe allow 1.33

doubling.

A1

for $\frac{4}{3}$ oe allow 1.33