

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	23

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Mark	Part Marks
1	$\frac{\left(\sqrt{5}+3\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)} \times \frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)}$	M1	rationalise with $(\sqrt{5} - \sqrt{3})$
	$=\frac{5+3\sqrt{15}-\sqrt{15}-9}{5-3}$	A1	numerator (3 or 4 terms)
	$=\frac{2\sqrt{15}-4}{2}=\sqrt{15}-2$	A1	denominator and completion
2	$lne^{3x} = ln6e^{x}$ $3x = ln6e^{x}$ $3x = ln6 + lne^{x}$ 3x = ln6 + x	M1 M1	one law of indices/logs second law of indices/logs
	$x = \frac{1}{2} \ln 6 \text{ or } \ln \sqrt{6} \text{ or } 0.896$	A1	www oe in base 10
3 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\sin x}{1+\cos x}\right) = \frac{(1+\cos x)\cos x + \sin x \sin x}{\left(1+\cos x\right)^2}$	M1 A1	Quotient Rule (or Product Rule from $(\sin x)(1 + \cos x)^{-1}$) correct unsimplified
	$= \frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$	B1	use of $\sin^2 x + \cos^2 x = 1$ oe
	$=\frac{1+\cos x}{\left(1+\cos x\right)^2}$	A1	completion
(ii)	$\int_0^2 \left(\frac{1}{1+\cos x}\right) dx = \left[\frac{\sin x}{1+\cos x}\right]_0^2$	M1	correct integrand
	awrt 1.56	A1	

Pag	e 3 Mark Schem	e		Syllabus	Paper	
	Cambridge IGCSE – October/November 2016				23	
Question	Answer	Mark		Part Marks		
4 (i)	$p(2) = 0 \rightarrow 8 + 4a + 2b - 24 = 0$	B1				
	$\rightarrow (4a + 2b = 16)$					
	$p(1) = -20 \rightarrow 1 + a + b - 24 = -20$	B1				
	$\rightarrow (a+b=3)$	M1	solve <i>their</i> linear equations for <i>a</i> or <i>b</i>			
	a = 5 and $b = -2$	A1	solve men mear	equations for	1 4 01 0	
	$r(x) = \frac{3}{5} \cdot \frac{5}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{24}{5}$	241				
(ii)	$p(x) = x^{3} + 5x^{2} - 2x - 24$	M1	find quadratic fac			
	$= (x-2)(x^{2}+7x+12)$	A1 M1	correct quadratic		write og pro	duat
	=(x-2)(x+3)(x+4)	IVII	factorise quadrati of 3 linear factors		write as pro	auci
	$p(x) = 0 \rightarrow x = 2, -3, -4.$	A1	if 0 scored, SC2 f	for roots only	7	
5 (i)	$AB^{2} = \left(\sqrt{3} + 1\right)^{2} + \left(\sqrt{3} - 1\right)^{2}$	M1	use cosine rule			
	$-2(\sqrt{3}+1)(\sqrt{3}-1)\cos 60$					
	$=3+1+2\sqrt{3}+3+1-2\sqrt{3}-2$	A1	at least 7 terms			
	= 6	A1	correct completio	on AG		
	sinA sin60					
(ii)	$\frac{\sin A}{\sqrt{3}-1} = \frac{\sin 60}{\sqrt{6}}$	M1	sine rule (or cosir	ne rule)		
	$\sin A = \frac{(\sqrt{3}-1)\sin 60}{\sqrt{6}} = \frac{\sqrt{6}-\sqrt{2}}{4}$ or 0.259	A1	correct explicit ex	pression for	sinA AG	
	v6 4 or 0.2588					
(iii)	Area = $\frac{1}{2}(\sqrt{3}+1)(\sqrt{3}-1)\sin 60$	M1	correct substitution	on into $\frac{1}{2}abs$	$\sin C$	
	$=\frac{\sqrt{3}}{2}$			2		
	$=\frac{1}{2}$	A1				
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sec}^2 x$	B1				_
	$x = \frac{\pi}{4} \rightarrow \frac{dy}{dx} = \sec^2 \frac{\pi}{4} = 2$	D1				
		B1	evaluated			
	y = 8 $y - 8$	B 1				
	Equation of tangent $\frac{y-8}{x-\frac{\pi}{4}} = 2$	B 1				
	•					
	$(4 - 2y = \pi - 16, y = 2x + 6.429, \pi - 0.7852$					
	$\frac{\pi}{4} = 0.7853)$					
	1		1			

Page 4		Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/November 2016			0606	23	
Question		Answer	Mark	Part Marks			
(ii)	tan (tar tan	$x^{2}x = \tan x + 7$ $x^{2}x - \tan x - 6 = 0$ oe $(\tan x - 3)(\tan x + 2) = 0$ $x = 3$ or $\tan x = -2$ x = 1.25, 2.03	M1 M1 A1A1	use $\sec^2 x = 1 + \tan^2 x$ to obtain a 3 term quadratic in $\tan x$ solve three term quadratic for $\tan x$ extras in range lose final A1			
7 (i)		$h^{2} = (0.5h+2)^{2}$ oe = $0.25h^{2} + 2h + 4 - h^{2}$	M1				
	r^2	$= 2h + 4 - 0.75h^2$	A1	correct expansion and completion w		ct	
(ii)	<i>V</i> =	$=\frac{1}{3}\pi r^{2}h = \frac{\pi}{3}\left(2h^{2}+4h-0.75h^{3}\right)$	B 1	any correct form	in terms of <i>h</i>	only	
	$\frac{\mathrm{d}V}{\mathrm{d}h}$	$= = \frac{\pi}{3} \left(4h + 4 - 2.25h^2 \right)$	M1 A1	differentiate V correct differentiation			
	$\frac{\mathrm{d}v}{\mathrm{d}h}$	$= 0 \rightarrow 2.25h^2 - 4h - 4 = 0$	M1	equate to 0 and so	olve 3 term q	uadratic	
	<i>h</i> =	2.49 only	A1	cao			
(iii)	$\frac{\mathrm{d}^2 h}{\mathrm{d}h}$	$\frac{W}{2} = \frac{\pi}{3} (4 - 4.5h)$ when $h = 2.49$	M1	differentiate <i>their</i> 3 term $\frac{dV}{dh}$ and substitute			e
	(-7	.545) < 0 so maximum	A1	<i>their h</i> draw correct conc	elusion www		
8 (i)	cos	$TOA = \frac{6}{10} \rightarrow$	M1	any method			
	TO	A = 0.927	A1				
(ii)		a of major sector = $r^{2}(2\pi - 2 \times their 0.927)$ (= 79.7)	M2	or M1 for $\frac{1}{2} 6^2 (2 \times their \ 0.927)$ DM1 for $\pi \times 6^2 - \frac{1}{2} 6^2 (2 \times their \ 0.927)$			
	area	a of half kite = $\frac{1}{2}(6)\sqrt{10^2 - 6^2}$ (=24)	M1				
	area	a of kite $\times 2$ (=48)	DM1	any method			
		nplete correct plan rt 128	DM1 A1	their major sector	+ <i>their</i> kite		
(iii)	6×	length = $(2\pi - 2 \times their 0.927) + 2 \times \sqrt{10^2 - 6^2}$) rt 42.6	M1 A1	complete correct	method		

Pag	e 5 Mark Scher	Syllabus Paper				
	Cambridge IGCSE – Octob	er 2016 0606 23				
Question	Answer	Mark	Part Marks			
9 (i)	<i>p</i> = 4	B1				
(ii)	$\tan \alpha = \pm \frac{1}{3}$ or ± 3 or 18.4° or 71.6° seen 108	M1 A1	could use cos or sin			
(iii)	$\boldsymbol{r}_{A} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} their \ p \\ -3 \end{pmatrix}$	B1				
(iv)	$\mathbf{r}_{A} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} their \ p \\ -3 \end{pmatrix}$ $\mathbf{r}_{B} = \begin{pmatrix} q \\ -15 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	B1				
(v)	5 - 3t = -15 - t $\rightarrow t = 10$	M1 A1	$\mathbf{r}_A = \mathbf{r}_B$ and equate y/\mathbf{j} and solve for t			
(vi)	$\begin{pmatrix} 41 \\ -25 \end{pmatrix}$ only	B1				
(vii)	q = 11 only	B1				
10 (i)	$\operatorname{fg}(x) = \ln(2e^x + 3) + 2$	B1	isw			
(ii)	$\mathrm{ff}(x) = \ln(\ln x + 2) + 2$	B1	isw			
(iii)	$x = 2e^{y} + 3$	M1	change x and y and make e^{y} the subject			
	$e^{y} = \frac{x-3}{2}$					
	$e^{y} = \frac{x-3}{2}$ $g^{-1}(x) = \ln\left(\frac{x-3}{2}\right) \text{ oe}$	A1				
(iv)	e ² or 7.39	B1				
(v)	$gf(x) = 2e^{(\ln x + 2)} + 3 = 20$	B1	gf correct and equation set up correctly			
	$2e^{\ln x}e^2 + 3 = 20$	M1	one law of indices/logs			
	$2xe^2 = 17$	M1	second law of indices/logs			
	$2e^{\ln x}e^2 + 3 = 20$ $2xe^2 = 17$ $x = \frac{17}{2e^2}$ or 1.15	A1				
			www if 0 scored, SC2 for 17.3			

F	Page 6				Syllabus	Paper
		Cambridge IGCSE – October	Cambridge IGCSE – October/November 2016			23
Questi	ion	Answer	Mark	Part Marks		
11 (i)		$\mathbf{A}^{2} = \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} = \begin{pmatrix} 4+pq & 2q+3q \\ 2p+3p & pq+9 \end{pmatrix}$	B2,1,0	-1 each error		
		$\mathbf{A}^2 - 5\mathbf{A} = 2\mathbf{I} \rightarrow 4 + pq - 10 = 2$ r 9 + pq - 15 = 2	M1	equate top left or	bottom right	elements
		$\Rightarrow pq = 8$	A1	accept $p = \frac{8}{q}$, q	$q = \frac{8}{p}$	
(ii)	d	$et \mathbf{A} = 6 - pq$	B1			
		-pq = -3p and solve	M1	<i>their</i> det $\mathbf{A} = -3p$ solve for <i>p</i> or <i>q</i>	b and use <i>the</i>	ir pq = k oe to
	-	$\rightarrow p = \frac{2}{3}$	A1			
	q	= 12	A1	FT from <i>their pq</i>	=k	