

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 22 MARK SCHEME Maximum Mark: 80 0606/22 March 2017

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Guidance
1	$-\frac{5}{3}$ isw	B1	or exact equivalent
	Solve $5 - 3x = -10$ or $(5 - 3x)^2 = 100$	M1	
	<i>x</i> = 5	A1	
2 (i)	\$12000	B1	
(ii)	$\frac{8000}{12000} = e^{-0.2t} \text{oe}$	M1	
	[t =] 2(.0273) years	A1	

Question		Answer	Marks	Guidance
3	(i)	multiply out correctly	B1	or divide out correctly
	(ii)	Finding another factor	B1	(x-1) or $(x+2)$ or $(x-2)$; method must be seen
		Either $(x-1)^{2}(x^{2}-4)$ Or $(x-1)(x+2)(x^{2}-3x+2)$ Or $(x-1)(x-2)(x^{2}+x-2)$	B1	For stating a relevant quadratic factor for
				their linear factors
		Attempts to factorise quadratic	M1	
		$(x-1)^2(x+2)(x-2)$ oe	A1	mark final answer
				 Alternative method: B1 for finding a second linear factor using any valid method and B1 for finding a third linear factor using any valid method and B1 for finding the final linear factor using any valid method and B1 for fully correct product stated; mark final answer
				If fully correct product stated but no method shown then B1 only.
4		Eliminates y $3x + k = 2x^2 - 3x + 4$	M1	Alternative calculus method: Equates gradients 4x - 3 = 3
		Collects terms $2x^2 - 6x + 4 - k = 0$ soi	A1	Finds point of tangency (1.5, 4)
		Applies $b^2 - 4ac$ $(-6)^2 - 4(2)(4-k)$ or better	M1	Substitutes into $y = 3x + k$ 4 = 3(1.5) + k
		$k < -\frac{1}{2}$ oe	A1	

Question	Answer	Marks	Guidance
5	$\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$ seen	B1	may be later in working; must be convinced that calculator has not been used
	$(3+\sqrt{5})x+\frac{1}{2}x(their 2\sqrt{5})=13+5\sqrt{5}$ oe		
	leading to $(3 + their 2\sqrt{5})x = 13 + 5\sqrt{5}$	M1	equates <i>their</i> area to given area and factorises to collect <i>x</i> terms; may still have $\sqrt{20}$
	$[x=]\frac{13+5\sqrt{5}}{3+their 2\sqrt{5}} \times \frac{3-their 2\sqrt{5}}{3-their 2\sqrt{5}}$	M1	divides and attempts to rationalise; may still have $\sqrt{20}$
			or forms a pair of simultaneous equations e.g. 3p+10q=13 $2p+3q=5$
	$[x=]\frac{39-26\sqrt{5}+15\sqrt{5}-50}{9-20}$	M1	numerator must have at least 3 terms; denominator may be -11
			or solves their simultaneous equations to find one unknown
	$1 + \sqrt{5}$ www	A1	or $p = 1, q = 1$
6 (a) (i)	$-2x^{\frac{5}{2}}$ oe or $a = -2$ and $b = \frac{5}{2}$ oe	B2	mark final answer B1 for -2 and B1 for $\frac{5}{2}$
(ii)	$[x=]\left(\frac{-6250}{their(-2)}\right)^{their\frac{2}{5}}$ oe	M1	may be in steps
	25	A1	
(b) (i)	Valid explanation	B1	e.g. If $x > 0.75$ then all the arguments are positive as required. oe
(ii)	$1 = \log_a a$	M1	may be seen in e.g. $\log_a(ax) = 1 + \log x$
	$2\log_a(4x-3) = \log_a(4x-3)^2$ soi	M1	
	completion to given result	A1	

Question	Answer	Marks	Guidance
(iii)	$x^{2}(16x-24) = 0$ oe or $x(16x-24) = 0$ oe	M1	e.g. equates, anti-logs, rearranges and factorises or divides OR rearranges, combines using correct log law, anti-logs and factorises or divides
	$[x=]\frac{24}{16} \text{ or } \frac{3}{2} \text{ oe}$	A1	inclusion of $x = 0$ is A0
7 (a)	$[r^{2} =] 5^{2} + 10^{2} - 2 \times 5 \times 10 \times \cos 120 \text{ oe}$	M1	or for $[r^2 =]5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 60^\circ$ or for $[r^2 =]5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 240^\circ$
	[<i>r</i> =] 13.2 or 13.22875 rot to 4 or more sf	A1	not from wrong working
	$\frac{\sin x}{5} = \frac{\sin 120}{their 13.2}$ or better	M1	or $\frac{\sin y}{10} = \frac{\sin 120}{their 13.2}$ or better
	[<i>x</i> =] awrt 19.1	A1	or [<i>y</i> =] awrt 40.9
	360 - 120 - their x	A1FT	or 180 + <i>their</i> y
(b)	94 [km/h] west	B2	B1 for 94 [km/h]
8 (i)	$y - (-4) = \frac{1}{6}(x - 6)$	B1	or $y = \frac{1}{6}x + c$ and $c = -5$
	$[m_{AB} =] \frac{7-4}{3-8}$ or $-\frac{3}{5}$ oe	M1	
	$y-7 = -\frac{3}{5}(x-3)$ or $y-4 = -\frac{3}{5}(x-8)$	A1	or $y = -\frac{3}{5}x + c$ and $c = \frac{44}{5}$
	$their\left(\frac{1}{6}x-5\right) = their\left(-\frac{3}{5}x+\frac{44}{5}\right)$	M1	valid method of solution for <i>their</i> equations; must be of equivalent difficulty
	x = 18	A1	
	y = -2 isw	A1	

Question	Answer	Marks	Guidance
(ii)	$[m=]-\frac{3}{2}$	M1	
	$y - their(-2) = -\frac{3}{2}(x - their 18)$ isw	A1FT	FT their D; $y = -\frac{3}{2}x + c$ and $c = their 25$
9 (a)	$ke^{2x+1}(+c)$	M1	for some non-zero integer <i>k</i> where $k \neq 2$
	$k = \frac{1}{2}$	A1	
(b) (i)	$\frac{\mathrm{d}(\ln x)}{\mathrm{d}x} = \frac{1}{x} \mathrm{soi}$	B1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{(their1)\ln x - x\left(their\frac{1}{x}\right)}{\left(\ln x\right)^2}$	M1	correct form of quotient rule or equivalent product rule applied; brackets may be omitted or misplaced for M1
	correct, isw	A1	may be unsimplified; allow recovery of brackets
(ii)	$\int \frac{\ln x - 1}{(\ln x)^2} dx + \int \frac{1}{x^2} dx = \frac{x}{\ln x} + \int \frac{1}{x^2} dx$ $\int \frac{1}{x^2} dx = -\frac{1}{x} (+c)$	M1	rearranges and uses their answer to (i)
		B1	
	$\frac{x}{\ln x} + \left(their - \frac{1}{x}\right)(+c)$	A1FT	correct or correct FT completion; <i>their</i> $-\frac{1}{x}$ must not be $\frac{1}{x^2}$

Question	Answer	Marks	Guidance
10 (i)	$\tan(2x-10) = \frac{4}{3}$	B 1	
	$2x - 10 = \tan^{-1}\left(\frac{4}{3}\right)$ soi	M1	
	31.6 and 121.6 isw	A1	or for 31.6 and 211.6 isw
	211.6 and 301.6 isw	A1	or for 121.6 and 301.6 isw
			Penalty of 1 mark if all 4 angles given correctly but prematurely approximated OR if any extra angles are given besides the correct 4
			If A0 A0 then allow SC1 for 53.1(30), 233.1(30), 413.1(30), 593.1(30) seen OR for 63.1(30), 243.1(30), 423.1(30), 603.1(30) seen
(ii)	$1 - \cos^2 x - \cos^2 x = \cos x$ $2\cos^2 x + \cos x - 1 = 0 \text{ oe}$	M1	uses $\sin^2 x = 1 - \cos^2 x$
	$2\cos^2 x + \cos x - 1 = 0$ oe	A1	
	$(2\cos x - 1)(\cos x + 1)[= 0]$	M1	factorises or solves <i>their</i> 3-term quadratic in $\cos x$
	[<i>x</i> =] 60, 300, 180	A2	A1 for any two correct
11 (i)	$g \ge -\frac{1}{2}$	B1	
(ii)	g(1) = 0 valid comment e.g. domain of f is $x \ge 2$	B1 B1	B1 for either
(iii)	$\frac{\left(\frac{x^2-2}{x}\right)^2-1}{2}$	M1	or $\frac{\left(x-\frac{2}{x}\right)^2-1}{2}$
	$\left(\frac{x^2 - 2}{x}\right)^2 = \frac{x^4 - 4x^2 + 4}{x^2}$ soi	B1	or $\left(x - \frac{2}{x}\right)^2 = x^2 - 4 + \frac{4}{x^2}$
	$\frac{1}{2}x^2 - \frac{5}{2} + \frac{2}{x^2}$	A1	or correct 3 term equivalent or $a = 0.5$, $b = -2.5$, $c = 2$

0606/22

Question	Answer	Marks	Guidance
(iv)	$x \ge 2$	B1	
(v)	$x^2 - yx - 2 = 0$	B1	or $y^2 - xy - 2 = 0$
	$x^{2} - yx - 2 = 0$ $[x =]\frac{-(-y) \pm \sqrt{(-y)^{2} - 4(1)(-2)}}{2}$	M1	or $[y=]\frac{-(-x)\pm\sqrt{(-x)^2-4(1)(-2)}}{2}$
	Explains why negative square root should be discarded	B1	at some point
	$f^{-1}(x) = \frac{x + \sqrt{x^2 + 8}}{2}$	A1	allow $y = \frac{x + \sqrt{x^2 + 8}}{2}$
			If zero scored, allow SC2 for showing correctly that the inverse of the given f^{-1} is f.
12 (i)	[length of rectangle =] $\frac{20 - 3x}{2}$	B1	
	$[A =] x \times their \frac{20 - 3x}{2} - \frac{1}{2} \times x \times x \times \sin 60 \text{ oe}$	M1	
	Correct completion to given answer $A = 10x - \left(\frac{6 + \sqrt{3}}{4}\right)x^{2}$	A1	
(ii)	$10 - 2\left(\frac{6+\sqrt{3}}{4}\right)x \text{ oe}$	B1	
	their $\left(10 - 2\left(\frac{6 + \sqrt{3}}{4}\right)x\right) = 0$ oe	M1	
	x = 2.6	A1	allow 2.586635 rot to 3 or more sf
	<i>A</i> = 13	A1	allow 12.9331 rot to 3 or more sf