Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE NUMBER

ADDITIONAL MATHEMATICS

0606/22
Paper 2
October/November 2022
2 hours
You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

Mathematical Formulae

1. ALGEBRA

Quadratic Equation
For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Solve the following simultaneous equations.

$$
\begin{align*}
x+5 y & =-4 \\
3 y-x y & =6 \tag{5}
\end{align*}
$$

2 Solve the equation $4 \mathrm{e}^{2 x-3}=7 \mathrm{e}^{5-x}$.

3 In this question a and b are constants.
The normal to the curve $y=\frac{a}{x}+3 x-2$ at the point where $x=1$ has equation $y=-\frac{1}{4} x+b$. Find the values of a and b.

4 Solve the equation $\log _{3}(11 x-8)=1+\frac{2}{\log _{x} 3}$ given that $x>1$.

5 DO NOT USE A CALCULATOR IN THIS QUESTION.

Find the x-coordinates of the points of intersection of the curves $y=7 x^{3}-7 x^{2}-17 x-4$ and $y=x^{3}-2 x^{2}-4 x-16$.

6 A 4-digit code is to be formed using 4 different numbers selected from 2, 3, 4, 5, 6, 7, 8 and 9. Find how many possible codes there are if the code forms
(a) a number that is odd and greater than 5000 ,
(b) a number greater than 5000 with a last digit that is prime.

7 (a) Show that $\frac{\sin x}{1-\cos x}+\frac{1-\cos x}{\sin x}=2 \operatorname{cosec} x$.
(b) Hence solve the equation $\frac{\sin x}{1-\cos x}+\frac{1-\cos x}{\sin x}=3 \sin x-1$ for $0^{\circ}<x<360^{\circ}$.

8 In this question all lengths are in centimetres.
The volume of a cylinder with radius r and height h is $\pi r^{2} h$ and its curved surface area is $2 \pi r h$. The volume of a sphere with radius r is $\frac{4}{3} \pi r^{3}$ and its surface area is $4 \pi r^{2}$.

The diagram shows a solid object in the shape of a cylinder of base radius r and height h, with a hemisphere of radius r on top. The total surface area of the object is $300 \mathrm{~cm}^{2}$.
(a) Find an expression for h in terms of r.
(b) Show that the volume, V, of the object is $150 r-\frac{5}{6} \pi r^{3}$.
(c) Find the maximum volume of the object as r varies.

9 In this question all lengths are in centimetres.

The diagram shows triangle $A B C$ which has area $\frac{2 \sqrt{5}}{3} \mathrm{~cm}^{2}$. Angle A is acute.
(a) Find the exact value of $\sin A$.
(b) Find the exact value of $\cos A$ and hence find the exact value of x.
(c) Find the exact value of $\sin B$.

10 (a) A geometric progression has third term 4.5 and sixth term 15.1875. Find the first term and the common ratio.
(b) Find the sum of ten terms of the progression, starting with the sixteenth term. Give your answer to the nearest integer.

11 The coordinates of points A and B are $(-5,6)$ and $(4,-6)$ respectively. The point C lies on the line $A B$, between A and B, such that $\frac{A C}{C B}=\frac{1}{2}$.
(a) Find the coordinates of C.
(b) The line $C D$ is perpendicular to $A B$. Find the equation of $C D$ in the form $y=m x+c$.
(c) The length of $B D$ is $\sqrt{125}$. Find the coordinates of the two possible positions of point D.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

