CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/21 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.xtrapapers.com

	Page 2	Mark Scheme			Syllabus	Paper
		IGCSE – May/June 2014			0607	21
1	(a)	(x+y)(x-y)	1			
	(b)	25 600	1			
2	(a)	$2\sqrt{3}$	1			
	(b)	30	1			
	(c)	150, -150	2	B1 for 1 in range	correct answer –1 1	for extra answer(s)
3	(a)	8	1			
	(b)	x^2y^2	2	B1 for 1	correct term	
4		12.5	3	M2 for $\frac{2}{1}$.	$\frac{0}{6}$ oe	
				or M1 for 1	60% = 20	
5	(a)	310	1			
	(b)	6	2	M1 for $\frac{1}{1}$	9.3 .55	
6	(a)	2√3	2	B1 for 5	$\sqrt{3}$ or $3\sqrt{3}$	
	(b)	$\frac{2\sqrt{3}}{\frac{7(5+\sqrt{2})}{23}}$	2	Accept o must see M1 for ×	ther correct alterna 23. $\frac{5}{(5+\sqrt{2})}$	te numerators, but

www.xtrapapers.com

Page 3	Page 3 Mark Scheme			Syllabus	Paper
	IGCSE – May/June 2014			0607	21
7 (a)	x = 1 $y = 12 - 2x$ $4y + 3x = 36$	1 2 2	B1 for ru B1 for cc B1 for ru	on the diagram led line with correct prrect intercept on ei led line with correct prrect intercept on ei	er axis gradient, or
(b)	R in correct region	1			
(c) (i)	9.25 or 9.1 to 9.4	1			
(ii)	(1, 8.25) or (1, 8.1 to 8.4)	1			

www.xtrapapers.com

	Page 4	Mark Scheme			Syllabus	Paper				
v		IGCSE – May/June 2014			0607	21				
8	(a)	$\frac{7}{10}, \frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}$ correctly placed	2	B1 3 probs correct						
	(b) (i)	$\frac{7}{15}$ oe	2	M1 FT for <i>their</i> $\frac{7}{10}$	\times their $\frac{6}{9}$					
	(ii)	14 15 oe	3	M2 for $\left(1-\frac{1}{15}\right)$, or $\left[\left(\frac{7}{10}\times\frac{6}{9}\right)+\left(\frac{7}{10}\times\frac{3}{5}\right)\right]$ or M2 for $\left(1-\frac{3}{10}\times their\right)$ or two of $\left[their\frac{7}{10}\times their\frac{6}{9}+1\right]$ or M1 for $\frac{3}{10}\times their\frac{2}{5}$	$\frac{3}{9} + \left(\frac{3}{10} \times \frac{7}{10}\right) = \sec \theta$ eir $\frac{2}{9}$ their $\frac{7}{10} \times their \frac{3}{9} + \frac{3}{10} + \frac{3}{10}$	$\left(\frac{3}{10} \times their \frac{7}{9}\right)$				
9	(a)	7	1							
	(b)	$\frac{1}{5}$	2	B1 for $\frac{24}{120}$ oe						
10		1, -2.5 oe cao	3	M1 Correct multiple M1 Correct simplified or M1 Correct multiple M1 Correct simplified $16x^2 + 24x - 40 =$ If M0 then SC1 for	ication leading to 4 lication eliminating ication leading to q = 0	$x + 3 = \pm 7$ fractions				