MARK SCHEME for the October/November 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41
Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

1 (a)	$x=-2$ drawn and ruled $y=2 x+3$ drawn and ruled Correct region clearly indicated 4.52	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for ruled line with positive gradient through $(0,3)$ or ruled line gradient 2 or correct line freehand B2 if given in co-ordinates or M1 for substituting $y=2 x+3$ in $5 x+8 y=40$ or y coefficients correctly eliminated A1 for $x=0.7619$ to 0.762 or M2 for x coefficients correctly eliminated or M1 for $y=\frac{40-5 x}{8}$ oe SC2 for $\frac{95}{21}$ oe
2 (a)	Plotting 4 points correctly	2	B1 for 2 or 3 correct
(b)	Negative	1	Ignore comment on strength
(c)	$[y=]-0.429 x+72.2$	2	$a=-0.4295$ to $-0.4294 \quad b=72.17$ to 72.18 B1 for either a or b correct or SC1 for $y=-0.43 x+72$
(d) (i)	61 [.0...]	1FT	FT their equation. Allow integer.
(ii)	Weak correlation oe	1	Allow "no correlation" if answer to (b) is no correlation

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

| 3 (a) | | | |
| :--- | :--- | :--- | :--- | :--- |
| (b) | | | |

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

5 (a)	2.83 or $2.828 \ldots$	4	M2 for $\sqrt{0.9^{2}-0.7^{2}}$ or M1 for $x^{2}+0.7^{2}=0.9^{2}$ or better and M1 FT for their $0.5657 \times 2 \times 2.5$ oe
(b)	$\begin{aligned} & \cos [\theta]=\frac{0.7}{0.9} \text { oe } \\ & \times 2 \end{aligned}$	M1 M1	or M2 for $\cos [\theta]=\frac{0.9^{2}+0.9^{2}-(\text { their } A B)^{2}}{2 \times 0.9 \times 0.9}$ or M1for their $A B^{2}=0.9^{2}+0.9^{2}-2 \times 0.9 \times 0.9 \times \cos \theta$
	77.85 to 77.89	A1	
(c)	5980 or 5975 to 5976	5	M1 for correct method for triangle $O A B$ and M1 for correct method for either sector and M1 for completion to volume of prism and M1 for their volume $\left(\mathrm{m}^{3}\right) \times 1000$
6 (a) (i)	$\mathbf{a}+\mathrm{b}$	1	B1 unsimplified
(ii)	$-\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b} \text { oe }$	2	
(b)	Correct route for $E B$	M1	
	Completion to $-\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$	A1	
(c) (i)	$\begin{aligned} & A D=E B \\ & A D / / E B \end{aligned}$	1	Accept in words Not $\overrightarrow{A D}=\overrightarrow{E B}$
(ii)	Parallelogram	1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

7 (a)		3	B2 for 4 correct or B1 for 2 correct
(b) (i)	$\frac{42}{200} \text { oe }$	1FT	FT their 42
(ii)	$\frac{9}{200} \text { oe }$	1FT	FT their 9
(c) (i)	$\frac{870}{39800} \text { oe }$	2	M1 for $\frac{30}{200} \times \frac{29}{199}$ oe
(ii)	$\frac{1920}{39800} \text { oe }$	3	M2 FT for $\frac{60}{200} \times \frac{16}{199}+\frac{16}{200} \times \frac{60}{199}$ oe M1 FT for one of above products
8 (a) (i)	58	1	
(ii)	67	2	B1 for $A B C=125$ or $A D E=67$
(b) (i)	2 from $P X S=Q X R$ ([vertically] opposite angles) $S P X=R Q X([$ angles in] same segment) oe $P S X=Q R X([$ angles in] same segment) oe	2	B1 for one of these or 2 pairs of angles identified as equal
(ii)	7.5	2	M1 for $\frac{8}{12}=\frac{5}{x}$ or better
(iii)	$\frac{64}{144}$ oe	1	0.444(4...)

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

11(a)	5300042400	2	B1 for each or M1 for $95400 \div 9$
(b) (i)	5:4 cao	1	
(ii)	90000	3	M2 for $95400 \div 1.06$ oe or M1 for $95400=106 \%$
(c)	5300	3	M1 FT for $\frac{53000+x}{42400+x}=\frac{11}{9}$ oe M1 FT for $9(53000+x)=11(42400+x)$ oe
(d)	Decrease 0.64\%	3	B2 for figs 9936 oe M1 for [\times] 1.08×0.92 oe
12(a)	$25^{2}=35^{2}+x^{2}-2 \times 35 \times x \times \cos 20$ Isolating x terms Completion with no errors	$\begin{gathered} 1 \\ \text { M1FT } \\ \text { A1 } \end{gathered}$	FT from reasonable attempt at cosine rule
(b) (i)	sketch of parabola, positive x^{2}, two positive zeros	M1	$\text { or } \frac{65.78 \pm \sqrt{\left[(-65.78)^{2}-4(1)(600)\right]}}{2(1)}$
	$\begin{aligned} & 10.94 \\ & 54.84 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
			SC1 for 10.9 and 54.8
(ii)	54.84	1FT	FT their larger solution to (b)(i)
(c)	1 hour 28 mins	3	M1 for $($ their $(54.84-10.94)) \div 30$ A1 FT for 1.46[3...] If $0, \mathbf{B} 1$ for decimal in hours converted into hours and minutes

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0607	41

13(a)	42	$\mathbf{1}$	
(b)	$3 x+7$	$\mathbf{2}$	$\mathbf{B 1}$ for $3(x+3)-2$
(c)	$\frac{x+2}{3}$ oe	$\mathbf{2}$	B1 for $y+2=3 x$ or $\frac{y}{3}=x-\frac{2}{3}$ or $x=3 y-2$ or inverse flow diagram
(d)	$\frac{1}{2 x+1}$ final answer	$\mathbf{3}$	B2 for $\mathrm{h}(x)=(2 x+1)(x+3)$ or $\mathbf{S C 1}$ for $\mathrm{h}(x)=(2 x+a)(x+b)$ or $a+2 b=7$ with a, b integers

