CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	Page 2	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/Novem	oer 2014	
1	(a) (b)	600 ÷ 5 × 4 oe 537.60	M1 4	B1 for [principal] =480 soi and M2 for <i>their</i> 480 + $\frac{their 480 \times 4 \times 3}{100}$ oe or M1 for $\frac{their 480 \times 4 \times 3}{100}$ oe
	(c) (i) (ii)	532.18	3	M2 for $480 \times (1.035)^3$ oe or M1 for $480 \times (1.035)^k$ oe $k \ge 2$ M2 for $\frac{\log 2}{\log 1.035}$ oe or $\frac{1000}{1000}$ of $\frac{1000}{1000}$ of $\frac{1000}{10000}$ of $\frac{1000}{1000}$ of $\frac{1000}$
2	(a) (b) (c) (d)	0.3675 [0]5 37 87.3 or 87.27 2.55 or 2.545	1 1 2 4	M1 for 1200 ÷ time in hours (13 < time < 14) oe B1 for 21 min or 0.35 h and M2 for $\frac{their \ 0.35}{13.75} \times 100$ oe or M1 for $\frac{any \ time \ difference}{13.75 \ or \ 13.45} \times 100$ oe
	(e)	420	3	M2 for 441 ÷ 1.05 oe or M1 for recognising 441 as 105%

	Page 3	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – October/Novembe	er 2014		0607	42
3	(a) (i)	10	1			
	(ii)	28	1			
	(iii)	20	1			
	(b) (i)	$\frac{18}{30}$ oe	1			
	(ii)	$\frac{19}{30}$	1			
	(c)	$\frac{42}{272}$ oe	3	M2 for $\frac{7}{17}$ or M1 for and 16		actions over 17
4	(a) (f) (i) (g) (i)	Fully correct graph drawn	2		sonable shap out lacking re	ed and separate asonable
	(b) (i)	(0, 0)	1			
	(ii)	(4, 8)	1			
	(c)	$[f(x)] \le 0, \ [f(x)] \ge 8$ o.e.	2	B1 B1		
	(d)	1 or 2 or 3 or 4 or 5 or 6 or 7	1			
	(e)	x = 2	1			
	(f) (i)	Correct line drawn, positive gradient and approximately asymptotic	1			
	(ii)	Asymptote	1			
	(g) (i)	Correct curve drawn	2	B1 for reas reasonable	sonable shap	e but lacking
	(ii)	2 < x x < 2.48 or 2.484 to 2.485 oe	2	B1 B1		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0607	42

Γ

5 (a)	68	3	B1 for [<i>ABC</i>] = 44 or [<i>XCB</i>] = 136 B1 for [<i>BAC</i> or <i>ACB</i>] = 68 or [<i>ACD</i>] = 112
(b)	36	4	B2 for $x = 10$ or M1 for $15x + 20 + x = 180$ oe and M1 FT for $360 \div their x$ only if answer is integer
(c) (i)	30	1	
(ii)	70	1	
(iii)	100	1	
6 (a) (i)	18.1	2	M1 if at least 2 mid-values soi
(ii)	Correct histogram drawn	3	B1 for correct widths no gapsB2 for 4 correct heightsor B1 for 3 correct heights drawn
(b) (i)	22	1	
(ii)	12	2	B1 for [LQ] = 15 or [UQ] = 27
(iii)	10	2	B1 for 90 seen

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0607	42

7 (a)	Correct reduction method to eliminate one variable or correct sketch x = -2 y = 3	M1 B1 B1	SC1 for correct answers without working
(b)	$\frac{13-21k}{11}$ oe	4	B1 for common denominator of 21 oe B2 for $3(x + 2) - 7(2x - 1)$ or better or B1 for $3(x + 2)$ or $7(2x - 1)$
(c) (i)	$\frac{120}{x}$	1	
(ii)	$\frac{90}{x+0.4}$	1	
(iii)	0.8[0] oe	4	M1 for <i>their</i> (c)(i) + <i>their</i> (c)(ii) = 225
			A2 for sketch of $y = \frac{12}{x} + \frac{90}{x+4}$ and $y = 225$ or other sketch which could lead to correct answer or A1 for 120(x+0.4) + 90x = 225x(x+0.4) or better e.g. $225x^2 - 120x - 48 = 0$ and A1 for $(5x - 4)(45x + 12)$ or A2 for
			$\frac{120 \pm \sqrt{(-120)^2 - 4(225)(-48)}}{2(225)} \text{ oe}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0607	42

8	(a)	$240^2 + 200^2 - 2 \times 240 \times 200 \cos 33$	M1	
0	(a)			No further uner a morthing allowed
		131 or 130.7	B2	No further wrong working allowed B1 for $[BV^2 =]$ 17080 to 17090
		sin 77 sin 68	MI	
	(b)	$\frac{\sin 77}{200} = \frac{\sin 68}{GB} \text{oe}$	M1	
		190 or 190.3	B2	If B0 then A1 for $\frac{200\sin 68}{\sin 77}$
	(c)	240 or 239.6 to 239.9	5	B1 for angle $MBG = 35^{\circ}$ soi
				M1 for correct use of scale and conversion
				M2FT for $\frac{1}{2} \times 24 \times 20 \sin 33 + \frac{1}{2} \times 20 \times$
				$\frac{their(b)}{10}\sin(180-68-77)$
				or M1 for one of the triangles SC3 for figs 239.6 to 239.9 or 240
	(d) (i)	186	1	
	(ii)	265	1	
9	(a)	14 h 21 or 22 min	5	M2 for $\pi \times 80^2 \times 90 \div 35$
				or M1 for $\pi \times 80^2 \times 90$ M1 FT for $\div 60 \div 60$
				M1 FT for decimal part of hours into min
	(b)	440 000	4FT	FT 2250000 – <i>their</i> volume in (a) if seen
				B3 for 440 000 to 441 000 or M2 for 150×150×100 – <i>their</i> volume in (a) if
				seen or M1 for $150 \times 150 \times 100$ If B0 scored then B1 FT for rounding to 2 sf (if answer allows)
	(c)	4.4×10^{5}	1FT	FT their (b)

	Pa	ge 7		Mark Scheme			Syllabus	Paper
				Cambridge IGCSE – October/Novembe	er 2014		0607	42
10	(a)	(i)		r + t	1			
		(ii)		$\frac{1}{3}\mathbf{r} - \frac{1}{3}\mathbf{t} \text{oe}$	2	M1 for a c	correct route.	
	(b)	(i)		$\frac{1}{3}$ r	1			
		(ii)		On <i>AB</i> [extended] oe dependent on part (b)(i) being <i>k</i> r	1dep			
11	(a)			11	2	B1 for [f(2	2) =] 5	
	(b)	(i)		Curve translated one to left	2	B1 for any <i>x</i> -axis	other transla	tion parallel to
		(ii)		Translation	1	Marks ind	ependent	
				$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ $\sqrt[3]{x} \text{ or } x^{\frac{1}{3}}$	1			
	(c)	(i)		$\sqrt[3]{x}$ or $x^{\frac{1}{3}}$	1			
		(ii)	(a)	Correct curve	1			
			(b)	Reflection y = x	1 1			
12	(a)			2.4	3		$\left(\frac{a}{4}\right)^3 = \frac{108}{500}$	
						or M1 for	cube or cube	root soi
	(b)			250	2	M1 for $\frac{A}{90}$	$=\left(\frac{4}{their(\mathbf{a})}\right)$	oe or better
						or $\frac{A}{90} = \left($	$\sqrt[3]{\frac{500}{108}}^2$ oe	