CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – October/N	ovembei	[.] 2014	0607	43
1	(a)	\$80 000	3	M2 for 65 600 ÷ 0 or M1 for 65 600 ÷		
	(b) (i)	\$5463.12	3	M2 for 5000 × 1.0 or M1 for 5000 ×		
	(ii)	\$26.79	3	M1 for $5000 \times 1.04 \times 1.03 \times 1.02^{3}$ (or <i>their</i> (b)(i) $\times 1.02^{2}$) M1 for 5000×1.025^{5}		
2	(a)	(6, -1)	1			
	(b)	$y = \frac{3}{2}x - 10 \text{ oe ISW}$	4	B3 for answer $\frac{3}{2}$	<i>x</i> −10	
				or B2 for $\frac{3}{2}$ oe		
				or B1 for gradient	$t = -\frac{2}{3}$ oe	
				and M1 for substi y = (their m)x + c See AG for other		a) into
	(c)	13	2FT	FT <i>their</i> (b) B1 for (0, 3) soi Condone – 13		
3	(a)	Rotation 90° [anticlockwise] oe About (2, 1)	1 1 1			
	(b) (i)	Triangle (5, 2) (3, -2) (5, -2)	2	SC1 for enlargem or $-k$ (not -1), or s.f. -2 any cent or 2 points correct	re	, 2) s.f. 2
	(ii)	Enlargement centre (3, 2)	1			
		Scale factor $-\frac{1}{2}$	1			
	(c)	Triangle (2, 1) (-2, 1) (-2, 2)	2	SC1 for 2 points of <i>x</i> -axis invariant, s		etch with

P	age 3	Mark Scheme		S	Syllabus	Paper	
		Cambridge IGCSE – October/N	ovembe		0607	43	
4	(a)	36.869	2	M1 for $\cos\theta = \frac{4}{5}$ of	e		
	(b)	41.2 or 41.18 to 41.19	2	M1 for $\left(2 \times \frac{36.87}{360}\right)$	$\times \pi \times 8^2$		
	(c)	23.2 or 23.18 to 23.19	2	M1 for $\frac{106.26}{360} \times \pi \times$	M1 for $\frac{106.26}{360} \times \pi \times 5^2$ M1 for $\frac{1}{2} \times 8 \times 3$ or		
	(d)	12 [.00]	2	M1 for $\frac{1}{2} \times 8 \times 3$ or			
				$\frac{1}{2} \times 5 \times 5 \times \sin(their 106.26)$ oe			
	(e)	14.9 or 15 or 14.90 to 15.05	2	$\pi \times 5^2 - (\mathbf{b}) - 2(\mathbf{c}) + 2(\mathbf{d})$ evaluated M1 for $\pi \times 5^2 - (\mathbf{b}) - 2(\mathbf{c}) + 2(\mathbf{d})$			
5	(a)		2	Correct curve with turning points in correct quadrants B1 for basic cubic shape with x^3 term negative			
	(b)	-1.83 or -1.834 -0.657 or -0.6566 2.49 or 2.490 to 2.491	1 1 1	If 0 scored SC1 for all 3 correct to 2 s.f. If <i>y</i> -coordinates included, penalty of 1.			
	(c)	(-1.29, -1.30) or (-1.291 to -1.290, -1.303)	1+1	If 0 scored SC1 for (1.29, 7.30) (1.2909 to 1.291, 7.303)			
	(d) (i)	Sketch of $y = 4 - 2x$ seen and crossing curve at all possible points in domain.	M1				
		-2.71 or -2.714, 0.143 or 0.1432 to 0.1433, 2.57 or 2.571	B2	B1 for one solution			
	(ii)	$ x < -2.71 \\ 0.143 < x < 2.57 $	1FT 1FT	FT in order Condone ≤, accept i	in words		

Ρ	age 4	Mark Scheme			Syllabus	Paper		
		Cambridge IGCSE – October/N	ovembe	r 2014	0607	43		
6	(a)	133 or 133.3	2	M1 for $\left(\frac{8}{12}\right)^2$ of	A1 for $\left(\frac{8}{12}\right)^2$ oe seen			
	(b)	2610 or 2612.7 to 2613	4	M3 for $600 \times \left(\frac{8}{3}\right)$				
					or M2 for $\left(\frac{800}{300}\right)^{\frac{3}{2}}$ oe			
				or M1 for $\sqrt{\frac{800}{300}}$. oe or		
				height = 19.5959	•••			
7	(a) (i)	$\mathbf{b} - \mathbf{a}$ oe	1					
	(ii)	$\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ oe	1	Allow unsimplifi	ed			
	(iii)	$\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \text{ or } \frac{1}{3}(\mathbf{a} + \mathbf{b})$	2	M1 for $\frac{2}{3}$ their (a)(ii)				
	(b) (i)	$-\mathbf{a} + \frac{1}{2}\mathbf{b}$ oe	1					
	(ii)	$\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \text{ or } \frac{1}{3}(\mathbf{a} + \mathbf{b})$	2	B1 for unsimplified or correct route				
	(c)	Same Point	1	Dep on (a)(iii) an	nd (b)(ii) corr	ect		
8	(a)	360 – 155 – 210 or 65 – 30 oe	1	Allow 360 – 325 35 + 155 + 210 =				
	(b) (i)	54.5 or 54.53	3	M1 for $80^2 + 95^2$ A1 for 2970 or 29		$5 \times \cos 35$		
	(ii)	332 or 332.7	4	M2 for $\frac{80\sin 35}{\text{their (b)(i)}}$ oe				
				implied by [C =] 57.3 or 57.29 or M1 for $\frac{\sin C}{80} = \frac{\sin 35}{their AC}$ oe				
				M1 for <i>their</i> $(360 - C + 30)$				
	(c) (i)	12 hours 24 minutes or 12 hours 23 to 24 minutes	3	B2 for 12.4 or 12 M1 for $\frac{80}{18} + \frac{95}{22}$ and B1 for correct hours to hours an	$+\frac{their 54.5}{15}$ et conversion	of their		
	(ii)	18.5 or 18.50 to 18.54 km/h cao	2	M1 for $\frac{80+95}{10}$	+ <i>their</i> 54.5 <i>ir</i> time			

Pa	age :	5	Mark Scheme		Syllabus Paper		
			Cambridge IGCSE – October/No	ovember	r 2014 0607 43		
9	(a)		$\frac{3}{9}$ $\frac{1}{9}$ oe	1	In all parts accept decimal/percentages (correct to 3 s.f.) but not ratios etc. Also, ISW attempts to convert to decimals, %		
			$\frac{4}{8} \frac{3}{8} \frac{1}{8}, \frac{5}{8} \frac{2}{8} \frac{1}{8}, \frac{5}{8} \frac{3}{8} \text{ oe}$	2	B1 for 1 set of branches for second ball correct		
			12	2	M1 for their $\frac{3}{9} \times their \frac{2}{8}$ (0.0833)		
		(ii)	$\frac{46}{72}$ oe	3	(0.63888)		
					M2 1 – their $\left(\frac{3}{9} \times \frac{2}{8} + \frac{5}{9} \times \frac{4}{8}\right)$ oe		
					or M1 for any 3 products giving different colours or $\frac{3}{9} \times \frac{2}{8} + \frac{5}{9} \times \frac{4}{8}$		
	(c)		$\frac{5}{9}$ oe	1			
10	(a)		(4), 10, (16), 30, 22, (18)	2	B1 for any 2 correct		
	(b)		56.7	2	M1 for evidence of midpoints 10, 30, 45, 55, 65, 85 (at least 3) used		
	(c)		(4), 14, 30, 60, 82, (100)	2FT	FT from (a), B1 for any 2 correct		
	(d)		Points plotted 1 Joined by smooth curve	2FT 1	B1FT for 4 correct FT dep on increasing c.f.s		
	(e)	(i)	soil B with both medians indicated or line on graph	1	(Medians $57 \pm 2, 71 \pm 1$)		
		(ii)	soil B, by 6 to 10	4	B3 for both iqrs 26 ± 2 , 19 ± 2 or B2 for one iqr If 0 scored SC1 for lines at 25 and 75 or other clear indication		
	(f)		18	2FT	B1 for 82		

Pa	age 6	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/N	ovembe	r 2014	0607	43	
11	(a)		3		each branch, middle branch must ugh (0, 0), outside branches must ss x-axis		
	(b)	$f(x) \le -\frac{2}{3} \text{ oe}$ $f(x) > 2$	2 1	Accept y, x , word condone < for $\leq a$		$\frac{2}{3}$ oe	
	(c) (i)	x = 2 x = -2 y = 2	1 1 1				
	(ii)	x = -1, x = -5 y = 2	1FT 1FT				
12	(a)	x(100-2x)	2	B1 for $100 - 2x$ c	e seen		
	(b)	sketch of $y = x(100 - 2x)$ or reaching $2x^2 - 100x + 900 = 0$ or all signs reversed sketch of $y = 900$ or	M1				
		$\frac{100 \pm \sqrt{(-100)^2 - 4(2)(900)}}{2 \times 2}$ or all signs reversed 11.8 or 11.77 or 38.2 or 38.22 to 38.23	M1 B1				
	(c)	1250	1				
	(d)	796 or 795.6 to 795.87	4	M1 for $2\pi r = 100$ A1 for $r = 15.91$. M1 for $\pi \times (their)$ at using circumfe	$\dots \text{ or } d = 31.8$ (r) ² with r from the		