0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0607	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

	13 h 35 mins or 13 h 34.8 to 35 mins [0]750 oe 825 or 825.0 to 825.1 ...	3	M1 for $11585 \div 852.9$ A1 for 13.58... B1 for 1350 or 1720 or 2550 B1 for $28.08 \ldots$ hours or $28 \frac{5}{60}$ oe M1 for $23170 \div$ their 28.08
	Triangle $(-1,1),(-1,2)(-3,1)$ Triangle $(-1,-1),(-1,-2),(-3,-1)$ Reflection $y=-x$ Stretch [stretch factor] 3 Invariant line $x=0$ oe	$\begin{gathered} \text { 2FT } \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	SC1 for rotation 90° clockwise about $(0,0)$ or rotation 90° anticlockwise about another point FT their (i) or SC1FT for reflection in $x=0$
(i) (ii) (b) (i) (ii)	$\begin{aligned} & 74.4[0] \\ & 21.7 \text { or } 21.73 \text { to } 21.74 \\ & \\ & 132.5[0] \\ & 2.33 \text { or } 2.332 \end{aligned}$	4 2 2FT	M1 for 80×0.93 oe or SC1 for 18.4[0] M1 for 80×0.88 oe A1 for reduction $=\$ 4$ M1A1 implied by $70.4[0]$ or 14.4 [0] M1 for $\frac{\text { their } \text { reduction }}{18.4} \times 100$ M1 for $143.1 \div 1.08$ M1 for $22 \times(1.431$ - their 1.325$)$ oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0607	43

4 (a)	$(-4,11)$	1,1	or M1 for $\binom{2}{7}+\binom{-6}{4}$ or SC1 for (8, 3)
(b)	$7.21 \text { or } 7.211 \ldots \text { or } 2 \sqrt{13}$	2	M1 for $\sqrt{4^{2}+6^{2}}$
(c)	$y=-\frac{2}{3} x+4 \text { oe }$	2	$\begin{aligned} & \text { B1 for gradient }=-\frac{2}{3} \\ & \text { or } \mathbf{S C} \mathbf{1} \text { for } y=m x+4 \end{aligned}$
(d)	$(3,2)$	1	
(e)	$y=\frac{3}{2} x-\frac{5}{2} \text { oe }$	3	$\begin{aligned} & \mathbf{M 1} \text { for grad }=\frac{-1}{\text { their gradient }} \\ & \mathbf{M 1} \text { for subs of their } \mathbf{(d)} \text { into } y=m x+c \text { oe } \end{aligned}$
(f)	Kite	1	
5 (a)	$\begin{aligned} & x(40-2 x)(30-2 x) \\ & 1200-80 x-60 x+4 x^{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	or B1 for $40-2 x$ or $30-2 x$ indep
(b)			
		2	B1 for any cubic curve ($+x^{3}$) with max \& min
(c)	$\begin{aligned} & 2.19 \text { or } 2.192 \ldots \\ & 10 \\ & 22.8 \text { or } 22.80 \text { to } 22.81 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(d)	22.8 would produce negative width/length	1	oe
(e)	3030 or 3032 to 3032.3...	1	
	28.7 or 28.68 to 28.69 or 18.7 or 18.68 to 18.69		
(a) (i) (ii) (b) (i) (ii)	$4 n-2$	2	B1 for $4 n+k$
	$(4 n-2) \times 10^{(n+1)} \mathrm{oe}$	1FT	$\text { their } \mathbf{(a)} \times 10^{(n+1)}$
	$2 \times 10^{[1]}, 2 \times 10^{-1}, 2 \times 10^{-3}, 2 \times 10^{-5}$	2	$\begin{aligned} & \mathbf{B} 1 \text { for } 2 \text { correct or } 2 \times 10^{-3}, 2 \times 10^{-1}, 2 \times 10^{[1]}, \\ & 2 \times 10^{-3} \end{aligned}$
	$(2 n-1) \times 10^{(3 n-2)}$	3	B1 for $2 n-1$ B2FT for $10^{(3 n-2)}$ or M1 for $10^{(n+1)-(3-2 n)}$ FT dep on (a)(ii) in correct form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0607	43

$7 \quad$ (a) (b) (c)	86 [.0] or 86.03 to 86.04 $246^{\circ} \text { or } 245.5 \text { to } 245.6$ 13000 or 13030 to 13035		M1 for $\frac{A B}{150}=\cos 55$ oe $\begin{aligned} & \text { M2 for }[\cos =] \frac{120^{2}+150^{2}-235^{2}}{2 \times 120 \times 150} \\ & \text { or M1 for } \\ & 235^{2}=120^{2}+150^{2}-2 \times 120 \times 150 \cos \theta \end{aligned}$ M1 for $125+$ their 120.6 M2 for $\frac{1}{2} \times 150 \times$ their $86 \times \sin 55$ oe $+\frac{1}{2} \times 120 \times 150 \times \sin ($ theirDAC $)$ oe or M1 for 1 of above areas soi by 5283 to 5285. ... or 7746. ...
8 (a) (b) (c) (i) (ii)	6.8 or 6800 Correct plotting 7 correct points and drawing smooth curve 10 1600 to 1900	2 5 2FT 2FT	M1 for clear evidence of midpoints used soi by figs 68 All FTS dep on increasing curve B2 for correct cfs seen $8,29,60,83,93,98,100$ or SC1 for correct cfs with 1 error B1FT for 7 corrects height plotted B1FT for points plotted at $5,6,7,8,9,10,12$ B1 dep FT for smooth curve dependent on increasing and dependent on B1 for heights B1 dep for 90 FT dependent on increasing curve B1dep FT for 5.8 (or 5800) or 7.6 (or 7600) seen or answer 1.8 dependent on increasing curve
$9 \quad$ (a) (i) (ii) (iii)	$\frac{x}{x+40}=\frac{15}{20}$ oe $20 x=15 x+40 \times 15$ oe 121 or $120.9 \ldots$ or $15 \sqrt{65}$ 40.3 or 40.24 to 40.35 or $5 \sqrt{65}$	1 1 2 2FT	Accept 600 for 40×15 M1 for $\sqrt{120^{2}+15^{2}}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0607	43

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
38700 \text { or } 38740 \text { to } 38752
\] \\
5140 or 5139 to 5142
\end{tabular} \& 4 \& \\
\hline \begin{tabular}{l}
10 (a) \\
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\(\frac{6}{10}, \frac{4}{10}\) oe \\
\(\frac{4}{9}, \frac{3}{9}, \frac{2}{9}\) correctly positioned twice \\
\(\frac{18}{90}\) oe
\[
\frac{24}{90} \mathrm{oe}
\] \\
\(\frac{64}{90}\) oe
\end{tabular} \& 3 \& \begin{tabular}{l}
M1 for \(\frac{6}{10} \times \frac{3}{10}\) \\
M2 for \(\frac{6}{10} \times \frac{2}{9}+\frac{4}{10} \times \frac{2}{9}\) \\
or M1 for one of above products \\
M2 for \(1-\) their \(\mathbf{(b) (i)}-\frac{4}{10} \times \frac{3}{9}\) oe \\
M1 for one of \(\frac{6}{10} \times \frac{4}{9}, \frac{6}{10} \times \frac{2}{9}, \frac{4}{10} \times \frac{4}{9}, \frac{4}{10} \times \frac{3}{9}\)
\end{tabular} \\
\hline \begin{tabular}{l}
11 (a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& x=-3 \\
\& y=-2
\end{aligned}
\]
\[
-2<y \leq \frac{1}{3}
\] \& 3

1
1

2 \& | M1 Basic shape |
| :--- |
| A1 RH branch cuts both + ve axes A1 asymptotes approximately right with no overlap |
| May be separate, B1 for either |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0607	43

(d) (e)	$\begin{aligned} & -4.75 \\ & -2.125 \text { or }-2.12 \text { or }-2.13 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Correct shape B1 for reflection of any part of (a) in x-axis
12 (a) (i) (ii) (b) (i) (ii) (iii)	$\begin{aligned} & -2 \\ & -7 \\ & 6-6 x \text { oe } \\ & \frac{4-x}{2} \text { or } 2-\frac{x}{2} \text { oe } \\ & \frac{11-13 x}{(3 x-1)(4-2 x)} \end{aligned}$	$\begin{gathered} 1 \\ 1 \mathrm{FT} \\ 2 \\ 2 \\ 3 \end{gathered}$	B1 for 4 - 2(3x-1) B1 for $x=4-2 y$ or $2 x+y=4$ M2 for $\frac{2(4-2 x)-3(3 x-1)}{(3 x-1)(4-2 x)}$ or B1 for $2(4-2 x)-3(3 x-1)$ or SC2 for $\frac{5-13 x}{(3 x-1)(4-2 x)}$ or M1 for common denominator $(3 x-1)(4-2 x)$

