

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

1 6 4 3 4 4 6 5 9 5

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/21

Paper 2 (Extended) May/June 2015
45 minutes

Candidates answer on the Question Paper.

Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

You may use an HB pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.

You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 40.

International Examinations

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Curved surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of pyramid, base area A, height h.

$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3}\pi r^2 h$$

Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

$$c$$
 b
 a
 c
 a

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Area = \frac{1}{2}bc \sin A$$

© UCLES 2015

3

Answer all the questions.

1	(a)	Write 4725.6 correct to two significant figures	S.
	(b)	Write 0.01026 correct to three decimal places	Answer(a)[1]
			Answer(b)[1]
2	Exp	and and simplify.	
	(a)	$-3x(2-x) - (3x^2 - 7)$	
	(b)	(5x - 3y)(2y - 5x)	Answer(a)[2]
			Answer(b)[3]

3	Find the exact value of $27^{-\frac{1}{3}}$.	
		Answer[2]
4	Simplify $(16x^8y^2)^{\frac{1}{2}}$.	
		Answer[2]
5	(a) Simplify. $\sqrt{27} + \sqrt{147}$	
	(b) Rationalise the denominator. $\frac{3 - \sqrt{5}}{3 + \sqrt{5}}$	Answer(a)[2]
		Answer(b)[3]

© UCLES 2015 0607/21/M/J/15

6	Cal	1270
6	20	lve.

$$\log x + \log 5 - \log 25 = \log 10$$

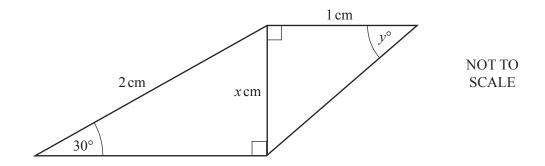
Answer
$$x =$$
 [3]

7 There are 400 students at a school.

 $\frac{2}{5}$ of the students are boys.

70% of the girls can swim.

The ratio of boys that **cannot** swim to girls that **cannot** swim is 2 : 3.


Complete the table.

	Boys	Girls	Total
Can swim			
Cannot swim			
Total			400

[4]

6

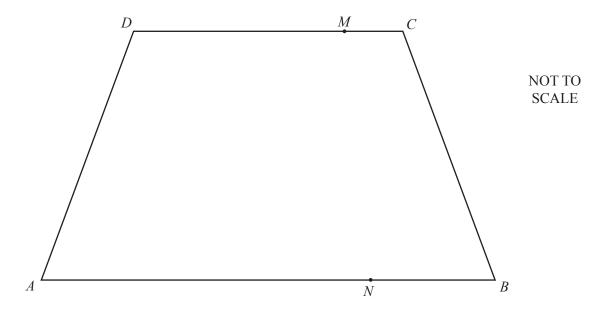
8

(a) Write down the value of x.

$$Answer(a) x = \dots [1]$$

(b) Find the value of y.

$$Answer(b) y = \dots [2]$$


9 $f(x) = \frac{1}{3x - 2}$

(a) Find f(4).

(b) Solve $f(x) = \frac{1}{4}$.

(c) Find $f^{-1}(x)$.

10

ABCD is a trapezium. $\overrightarrow{AB} = 2DC$, $\overrightarrow{DM} = 2MC$ and $\overrightarrow{AN} = 3NB$. $\overrightarrow{AB} = \mathbf{p}$ and $\overrightarrow{AD} = \mathbf{q}$.

(a) Write \overrightarrow{MC} in terms of **p**.

Answer(a)[2]

(b) Find \overrightarrow{MN} in terms of **p** and **q**.

Answer(b)[2]

Question 11 is printed on the next page.

O
ж

1	The point A has co-ordinates $(2, 8)$ and the point B has co-ordinates $(6, 6)$.
	Find the equation of the perpendicular bisector of the line <i>AB</i> .
	<i>Answer</i> [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 0607/21/M/J/15