CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/31

Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0607	31

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
III W W	not from wrong working

soi seen or implied

			-	
1	(a)	2, 3, 6, 9	1	
	(b) (i)	26	1	
	(ii)	300.763	1	
	(iii)	12.8 or 12.76	2	B1 for 37.4 seen
	(c) (i)	807.54 cao	1	
	(ii)	807.5 cao	1	
	(iii)	810 cao	1	
	(iv)	800 cao	1	
2		a = 48 b = 44 c = 44 d = 88	1 1 1 FT 1 FT	FT <i>their</i> (b) FT 180 – 48 – <i>their</i> 44 or 180 – <i>their</i> (a) + <i>their</i> (b)
3	(a)	36	2	M1 for 25 or 4 seen
	(b)	17.8 or 17.77	3	M2 for $\frac{5300 - 4500}{4500} \times 100$ oe
				or M1 for $\frac{5300 - 4500}{4500}$ or $\frac{5300}{4500} \times 100$
4	(a) (i)	19.2	1	
	(ii)	18.4	1	
	(b)	0.5 0.4	1 1	If 0 scored SC1 if reversed
	(c)	64 64	1 1	
	(d)	147.2[0]	2 FT	M1 for <i>their</i> $64 \times [0]$.95 and <i>their</i> 64×1.35 oe

Pa	age 3	Mark Sche		mbor 2015	Syllabus 0607	Paper 31
		Cambridge IGCSE – Octo			0007	31
5	(a) (i)	5	1			
	(ii)	23	1			
	(iii)	23.5 oe	1			
	(iv)	23.6	1			
	(b)	4 3 2 1 0 21 22 23 24 25 26	2	B1 for 4 correct bars		
6	(a)	150	1			
	(b)	300	1 FT	FT their (a) $\times 2$		
	(c)	[0].65	2	M1 for 2 × 1.45 + [0].7[0] or better	
	(d)	[0].75	1			
7	(a)	F + 2M	2	B1 for 2 <i>M</i> seen		
	(b)	15	2 FT	M1 for correct substituti	ion in <i>their</i> fo	ormula
	(c)	9	2 FT	M1 for correct substituti	ion in <i>their</i> fo	ormula
8	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	B1 for 2 correct regions		
	(b) (i)	1 3 7	1 FT			
	(ii)	2 10	1 FT			
	(iii)	4 9	1 FT			
	(c) (i)	$\frac{5}{10}$ oe	1			
	(ii)	$\frac{3}{10}$ oe	1			
	(iii)	$\frac{4}{10}$ oe	1			

Pa	age 4	Mark Sche			Syllabus	Paper
		Cambridge IGCSE – Octo	ber/Nov	ember 2015 0607 31		
9	(a)	33 46	1 1			
	(b)	<i>n</i> ² – 3	3	B2 for $n^2 \pm k$ or M1 for finding second differences or any quadratic		
10	(a)	1/20 L T 19/20 NL 1/5 C 1/15 L 1/4/15 NL	3	B1 for each branch		
	(b)	$\frac{4}{100}$ oe	2	M1FT for $\frac{4}{5} \times their \frac{1}{20}$		
	(c)	$\frac{71}{75}$ or 0.947 or 0.9466	3	M2 for $\frac{4}{5} \times their \frac{19}{20} + their \left(\frac{1}{5} \times \frac{14}{15}\right)$		
				or M1 for $\frac{4}{5} \times their \frac{19}{20}$	or their $\left(\frac{1}{5}\right)$	$\times \frac{14}{15}$
11	(a)	Vertices at (3, 1) (3, 2) (4, 2) (4, 4) (5, 4) (5, 1)	2	If 0 scored SC1 for refl y = 1 or $x = 0$	ection in	
	(b)	Vertices at (-5, -2) (-3, -1) (-4, -1) (-4, 1) (-5, -1) (-3, -2)	2	If 0 scored SC1 for training $\begin{pmatrix} -2 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -3 \end{pmatrix}$ or $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$		
	(c)	Vertices at (1, -1) (1, -2) (2, -2) (3, -1) (2, -4) (3, -4)	2	If 0 scored SC1 for any a rotation of 180°	y rotation abo	ut (0, 0) or
12	(a)	Points plotted correctly	2	B1 for each point		
	(b)	(5, 0)	2	B1 for each co-ordinate If 0 scored SC1 for (0,		
	(c)	8.49	3	M1 for $\sqrt{6^2 + 6^2}$ or be A1 for 8.485 to 8.486	tter	
	(d)	-1	2	M1 for $\frac{\text{rise}}{\text{run}}$		
	(e)	y = -x + 5 oe	2 FT	M1 for $[y =] - x + k$ of FT from (d)	$\mathbf{r} \ x + y = k$	

Pa	age 5	Mark Scho			Syllabus	Paper	
		Cambridge IGCSE – Octo	ber/Nov	ember 2015	0607	31	
13	(a)	72	1				
	(b)	108	2	M1 for $\frac{2(180 - their 72)}{2}$ or $180 - \frac{360}{5}$ oe			
				or B1 for 54			
	(c)	4.13 or 4.129	2 FT	M1 for $\tan 54 = \frac{r}{3}$ or $\frac{1}{3}$	$54 = \frac{r}{3}$ oe FT $\frac{their \text{ angle in } (\mathbf{a})}{2}$		
				or $\frac{\text{angle in}(\mathbf{b})}{2}$			
	(d)	61.9 - 62.[0]	3 FT	M2 for $\left(\frac{1}{2} \times 6 \times their 4\right)$	$(13) \times 5$		
				or M1 for $\frac{1}{2} \times 6 \times their$	4.13		
14	(a)	Fully correct curve	2	B1 for correct cubic shape (maximum then minimum)			
	(b) (i)	(-4, 0) (1, 0) (5,0)	2	B1 for 2 correct			
	(ii)	(0, 10)	1				
	(iii)	(3.27, -14.3) or (3.270, -14.28 to -14.27)	2	B1 for each co-ordinate			