CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/63

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0607	63

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

A	INVES	STIGATION SECURITY CAMERAS		
(Question	Answer	Mark	Part Marks
1	(a) (i)	$ \begin{array}{cccc} X & X & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	1	
	(ii)	X X X Oe	1	
	(iii)	X X X Oe	1	
	(b)	n + 1	1	
2	(a) (i)	$\begin{array}{ccc} X & & & \text{oe} \\ & & X \\ & X \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\$	1	B1 for diagram and 4
	(ii)	$\begin{array}{c} X \\ X $	1	
	(iii)	$\begin{array}{c} X \\ X $	1	
	(b)	2 <i>n</i> + 2 oe	1	C opportunity

Question				Anow	r			Mark	Part Marks
-	0	Answer							Part Marks
\$	9 12							1 1	
									C opportunity
(a)		1	Num 2	iber of squa	res in each	row 5	n	2	B1 for 8, 9 or 10 number cells
	One	square	squares	squares	squares	squares	squares		correct
	row					6			B1 for $4n + 4$ oe
	Three rows			8	10	12			
	Five rows				15	18			
	Seven rows		12	16	20	24	4 <i>n</i> + 4		
		<u> </u>	Į	Į			oe		
(b)	$\frac{1}{r+1}$	$n + \frac{1}{2}(r$	+1) 00					1	
	2 (7 + 1)	2	1) 00						
(c)	1, 3, 7, 1	15						1	C opportunity
5 (a)	10							1	C opportunity
	13								
(b)	$\frac{3n}{2}+1$							1	C opportunity
	2								
6 (a)			1	of squares		,		2	B1 for 4, 5 or 6 number cells correct
		2 squares	4 squares	6 squares	8 square	s <i>n</i> squa	res		01
	Two rows								B1 for $\frac{9n}{2} + 4$ oe
	Four								
	rows			17	22				
	Six rows		17		31				
						9 <i>n</i>			
	Eight rows		22	31		$\frac{9n}{2}$	+ 4		
(b)	$\frac{1}{r+1}$	$\left(n+\frac{1}{2}r\right)$	oe					1	
	2	2							
Communicati	ion seen in	two of 2(b). 3. 4(c	c). 5(a). 5	5(b)			1	

Page 4	Page 4 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0607	63

B	B MODELLING BACTERIA							
Ç	Question	Answer		Part Marks				
1	(a)	Correct curve between $x = 1$ and $x = 5$	2	B1 for 5 points correctly plotted (within 1 mm)B1 for curve through plotted points (within 1 mm)				
	(b)	Answer in range 80 to 100	1					
2	(a)	$[n=] pq^{x}$	1					
	(b)	[q =] 1.48	1FT	FT $n = px^2 + q$ in their (a)				
	(c) (d) (i)	[<i>p</i> =] 77.1[] Answer in range 1099 to 1200	1FT 1FT	C opportunity FT their q in $n = pq^x$ Or their q in $n = px^2 + q$ C opportunity FT their p and their q in non- linear models C opportunity				
	(ii)	77[.1]	1FT	c opportunity				
	(iii)	Correct statement about similarity of answers	1FT	FT <i>their</i> 1(b) and <i>their</i> 2(d)(ii)				

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0607	63

B MO	DELLING BACTERIA			
Question	Answer		Part Marks	
3 (a)	2.23 2.4[0] 2.57 2.72	2	B1 for accuracy to 3 s.f.andB1 for all correct if rounded	
(b)	3[.0] 2.4[]	1	Correct to 1d.p.	
(c)		2FT	B1FT for 5 correctly plotted points B1FT for correct ruled line between $x = 1$ and $x = 5$ through (3, <i>their</i> 2.4)	
(d) (i)	1.9 to 1.95	1	FT <i>their</i> correct line of best fit if outside range	
(ii)	0.15 to 0.17	1	C opportunity	
(e)	890 to 1390	1	C opportunity	
(f)	79 to 90	1		
4	Correct statement comparing the models	1FT	FT <i>their</i> 3(e) and <i>their</i> 2(d)(i)	
Communicatio	on seen in two of 2(b) , 2(c) , 2(d)(i) , 3(d)(ii) , 3(e)	1		