## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

## CAMBRIDGE INTERNATIONAL MATHEMATICS

$0607 / 43$
Paper 4 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 120


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - May/June 2016 | 0607 | 43 |

## Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

| Question | Answer | Mark | Part Marks |
| :---: | :---: | :---: | :---: |
| 1 (a) (i) <br> (ii) <br> (iii) <br> (iv) <br> (b) | $\begin{aligned} & 13205.2 \\ & 13200 \\ & 13210 \\ & 13205.173 \\ & 120 \end{aligned}$ | 1 <br> 1 <br> 1 <br> 1 <br> 1 |  |
| 2 (a) <br> (b) <br> (c) | $\begin{aligned} & (3 x+2)(x-4) \\ & -\frac{2}{3}<x<4 \\ & 221.8 \text { or } 221.8 \ldots \\ & 318.2 \text { or } 318.18 \text { to } 318.19 \end{aligned}$ | 2 <br> 2FT <br> 3 | SC1 for $(3 x+a)(x+b)$ where $a b=-8$ or $a+3 b=-10$ <br> B1 for either correct <br> B2 for either correct or M1 for $\sin x=$ their $\left(-\frac{2}{3}\right)$ where $-1<$ their $\left(-\frac{2}{3}\right)<1$ or M1 for sketch or M1 for 41.8 or -41.8 seen |
| 3 (a) <br> (b) <br> (c) | 62.5 <br> 2 <br> $x=\sqrt[3]{2 y}-1$ oe final answer | 3 <br> 2 <br> 3 | B1 for $y=k(x+1)^{3}$ <br> B1 for $k=0.5$ <br> OR <br> M2 for $\frac{y}{32}=\frac{(4+1)^{3}}{(3+1)^{3}}$ <br> B1FT for $x+1=\sqrt[3]{\text { their } 27}$ <br> M1 for division by their $k$ <br> M1 for cube root <br> M1 for subtracting 1, must be final step |


| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - May/June 2016 | 0607 | 43 |


| Question | Answer | Mark | Part Marks |
| :---: | :---: | :---: | :---: |
| $4 \quad$ (a) (i) <br> (ii) <br> (b) | $A=4 r^{2}-\pi r^{2}$ oe final answer <br> 30.9 or 30.88 to 30.90 [...] <br> $8 r+2 \pi r$ oe final answer | 1 <br> 3 | M1 for $a r^{2}-b \pi r^{2}$ <br> B1 for $8 r$ oe B1 for $2 \pi r$ oe <br> If $\mathbf{B} \mathbf{0}$ scored then $\mathbf{M 1}$ for $r+r+\frac{1}{4} \times 2 \pi r$ oe |
| 5 (a) <br> (b) <br> (c) <br> (d) | $0.5 \times 12.4 \times x \times \sin 30[=34.1]$ oe 6.21 or 6.205 to 6.206 <br> 62.3 or 62.4 or 62.33 to $62.41 \ldots$ $6.2$ | 1 <br> 3 <br> 3 <br> 2 | B2 for 38.50 to 38.51 <br> or M1 for $11^{2}+12.4^{2}-2 \times 11 \times 12.4 \times \cos 30$ <br> M2 for $\sin A=\frac{11 \times \sin 30}{\text { their } 6.21}$ <br> or $\cos A=\frac{12.4^{2}+(\text { their }(b))^{2}-11^{2}}{2 \times 12.4 \times \text { their }(b)}$ <br> or M1 for $\frac{11}{\sin A}=\frac{\text { their } 6.21}{\sin 30}$ oe <br> M1 for $12.4 \times \sin 30$ oe |
| $6 \quad$ (a) <br> (b) (i) <br> (ii) | $\begin{aligned} & 166 \text { or } 165.6 \text { to } 165.7 \\ & 2.6,13.2,16.4,23.6,16.4,1.73 \\ & \text { Suitable vertical scale } \\ & \text { Correct column widths } \\ & \text { Correct heights } \end{aligned}$ | $\begin{gathered} 2 \\ 2 \\ 1 \\ 1 \\ 2 \text { FT dep } \end{gathered}$ | M1 for correct use of mid-pts at least 4 of (150, $157.5,162.5,167.5,172.5,182.5)$ <br> B1 for 4 or 5 correct <br> B1 for 4 or 5 correct <br> dep on at least B1 in (b)(i) |
| $7 \quad$ (a) <br> (b) | $90000$ $2028$ | 4 3 | M3 for $1.05 \times 1.1 \times a=103950$ or better M2 for $\frac{103950}{1.05 \text { or } 1.1}$ oe or M2 for $1.05 \times 1.1$ M1 for $103950=105 \%$ <br> M2 for $1.05^{n}=\frac{200000}{103950}$ where $n>1$ or M1 for $103950 \times 1.05^{n}$ where $n>1$ If 0 scored SC2 for 13.4 or $13.41 \ldots$ seen |


| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - May/June 2016 | 0607 | 43 |


| Question | Answer | Mark | Part Marks |
| :---: | :---: | :---: | :---: |
| 8 (a) <br> (b) <br> (c) | $\begin{aligned} & 6 \mathbf{p}-\mathbf{q} \\ & 3 \mathbf{p}+\mathbf{q} \text { oe } \\ & 3 \mathbf{p}-2 \mathbf{q} \text { oe } \end{aligned}$ | $2$ <br> 3 | B1 for $\overrightarrow{X D}=-\mathbf{q}$ or M1 for $\overrightarrow{A D}=\overrightarrow{A X}+\overrightarrow{X D}$ oe M1 for $\overrightarrow{A C}=9 \mathbf{p}$ or $\overrightarrow{X C}=3 \mathbf{p}$ or correct route M1 for $\overrightarrow{B D}=$ their (a) <br> M1 for $\overrightarrow{C B}=\overrightarrow{C D}+\overrightarrow{D B}$ oe |
| 9 (a) <br> (b) <br> (i) <br> (ii) <br> (iii) | $[Q R=]$ $P$ <br> $[P Q R=]$ $Q$ <br> $[S T=]$ $Q$ <br> $[S Q=]$ $T$ <br> $[P T P=]$ $T$ <br> $[T P P=]$ $S$ <br> Points $(2,2)(2,1)(5,1)$  <br> Points $(2,-2)(2,-1)(5,-1)$  <br> Rotation  <br> $90[$ anticlockwise $]$ oe <br> $[$ Centre $(0,0)$ oe | 6 <br> 2 <br> 1FT <br> 1 1 1 | B1 for each <br> B1 for $(2,1)$ or $(5,1)$ correct <br> FT their $B$ reflected in $x$-axis |
| (b) (i) <br> (ii) <br> (c) <br> (i) <br> (ii) <br> (iii) | Points correctly plotted <br> Positive <br> 32.7 <br> 23.6 $[y=]-5.57+0.892 x$ <br> 21.2 or 21.19... <br> Outside range | 3 <br> 1 <br> 1 <br> 1 <br> 2 <br> 1FT <br> 1 | B2 for 4 or 5 correct points B1 for 2 or 3 correct points <br> B1 for $-5.57+k x$, or $\mathbf{B 1}$ for $a+0.892 x$, If 0 scored SC1 for $-5.6+0.89 x$ <br> FT their (c)(i) using $x=30$ |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - May/June 2016 | 0607 | 43 |


| Question | Answer | Mark | Part Marks |
| :---: | :---: | :---: | :---: |
| 11 (a) <br> (b) <br> (c) <br> (d) | Correct sketch $\begin{aligned} & x=1 \\ & x=3 \\ & y=3 \\ & (2,2) \\ & 1.38,2,3.62 \end{aligned}$ | 1 <br> 1 <br> 1 <br> 3 | B1 Correct graph for $x>3$ <br> B1 Correct graph for $x<1$ <br> B1 Correct graph for $1<x<3$ <br> B1 Approximately correct intercepts <br> B1 for each |
| 12 (a) <br> (b) <br> (c) | 18 <br> 18 <br> 90 | $2$ | M1 for $4 x+6 x=180$ <br> M1 for $180-6 x-3 x$ <br> M2 for $180-3 x-x-x$ <br> or B1 for $C E D=x$ or $D C E=4 x$ |
| 13 (a) (i) <br> (ii) <br> (iii) <br> (b) | 4.71 or $1.5 \pi$ or 4.712 to 4.713 <br> 12.5 or $1.5 \pi+4.5 \sqrt{3}$ oe or 12.50 to 12.51 <br> 31.4 or $7.5 \pi+4.5 \sqrt{3}$ oe or 31.35 to 31.36 <br> 263 or $31.5 \pi+94.5 \sqrt{3}$ oe or 262.6 to 262.7 | 3 <br> 3 <br> 4 | M1 for $\frac{60}{360} \times \pi \times 3^{2}$ <br> M2 for $0.5 \times 3 \times \frac{3}{\cos 60} \times \sin 60+$ their $($ a) oe or M1 for $\frac{3}{\cos 60}$ <br> B1 for hyp = 6 <br> M1 for $\frac{60}{360} \times \pi \times(\text { their } 6)^{2}$ <br> M3 for $1.5 \pi+6 \pi+24 \pi+$ $4.5 \times \sqrt{3}+18 \times \sqrt{3}+72 \times \sqrt{3}$ <br> or M1 for $1.5 \pi+6 \pi+24 \pi$ <br> and M1 for $4.5 \times \sqrt{3}+18 \times \sqrt{3}+72 \times \sqrt{3}$ <br> or M1 for correct new triangle in diagram 4 or M1 for correct new sector in diagram 5 or M1 for correct new triangle in diagram 6 |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - May/June 2016 | 0607 | 43 |

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part Marks \\
\hline \begin{tabular}{l}
(i) \\
(ii) \\
(b) \\
(i) \\
(ii)
\end{tabular} \& \(\left(\frac{x}{x+y}\right)^{2}\) oe final answer \(2 \times \frac{x y}{(x+y)^{2}}\) oe final answer \(\frac{x(x-1)}{(x+y)(x+y-1)}\) oe final answer \(2 \times \frac{x y}{(x+y)(x+y-1)}\) oe final answer \& 2
3

3
3

3 \& | B1 for $\frac{x}{x+y}$ |
| :--- |
| M2 for $\frac{x}{(x+y)} \times \frac{y}{(x+y)}$ oe or B1 for $\frac{y}{x+y}$ seen |
| B2 for $\frac{x-1}{x+y-1}$ |
| or $\mathbf{B 1}$ for $x+y-1$ seen M2 for $\frac{x}{(x+y)} \times \frac{y}{(x+y-1)}$ oe or $\mathbf{B 1}$ for $\frac{y}{x+y-1}$ seen | <br>

\hline
\end{tabular}

