MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	61

Abbreviations
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

A INVESTIGATION					
Question			Answer	Mark	Part Marks
(a) (b) (c)	2Scale factor 3 $\mathbf{5}$ 7 Similar	$P S$ 4 6 2	$P B$ $\mathbf{1 2}$ 30 14	1 3 1	B1 for each one correct
2 (a) (b) (c)	$\frac{2}{20}=\frac{1}{10}$ 8 $\frac{y}{2}$ oe			1 1 1	Allow, for example, $2: 20=1: 10$ or $2: 1=20: 10$ or $2 \times 10=20$ and $1 \times 10=10$ or 2: 20 and 1: x so $2 x=20, x=10$ or $P S$ is double $R S$ so $P B$ is double $Q B$ or equivalent C opportunity condone $\frac{y}{2} \times 1$
3	$\frac{y}{4} \text { oe }$			1	condone $\frac{y}{4} \times 1$ If 0 scored in 2(c) and 3, allow SC1 for answers of $y=2 x$ and $y=4 x$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	61

Question	Answer	Mark	Part Marks
4 (a) (b) (c)	18 12 their 6	1 1 1FT	C opportunity C opportunity strict FT their y - their z
5	$\begin{aligned} & {[y=] 5 x \text { and }[z=] 4 x} \\ & {[A P=] 5 x-4 x=x} \end{aligned}$	M1 A1	may be on diagram Allow 2 marks for $y=5 x$ and $z=4 x$ seen or clearly indicated $[A P=] y-z=x$
6	$[A P=] n x-(n-1) x=x$	1	or $n x-(n x-x)=x$ or $n x-n x+x=x$ not from wrong working or equating expressions for $B Q$ $\frac{y}{n}=\frac{z}{n-1}$ and rearranging to show that either $y-z=\frac{y}{n}$ with $x=\frac{y}{n}$ or that $y-z=\frac{z}{n-1}$ with $x=\frac{z}{n-1}$ C opportunity
$7 \quad$ (a) (b)	$\begin{aligned} & \frac{x}{2} \\ & \frac{x}{m} \end{aligned}$	2	M1 for $\frac{1}{2} x n$ and $\frac{1}{2} x(n-1)$ oe seen or for $x=2 A P$ C opportunity
Communication seen in 3 of 2(b), 4(a), 4(b), 6 or 7(b)		2	C1 if seen in two of them

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	61

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	61

Question	Answer	Mark	Part Marks
5 (a) (b) (c)	600 $\frac{1}{10}$ oe isw Uses an algebraic process to find either $\mathrm{h}(n+1)=2^{\text {their } \frac{1}{10}} \times \mathrm{h}(n)$ oe or $k=2^{\text {their } \frac{1}{10}}$ or 1.07 or 1.071 to 1.072	1 1FT	FT their value of b, provided $b \neq 1$; Allow $k=2^{b}$ isw Condone k found by calculating the ratio of at least 2 pairs of consecutive values e.g. $\frac{h(2)}{h(1)}$ and $\frac{h(4)}{h(3)}$
6 (a) (b)	77.3 or 77.29 to 77.295 9	2	M1 for $2^{\frac{k}{23}}$ where k may be a constant or a variable seen C opportunity not from wrong working M1 for $100 \times 2^{n}=108$ or $100 \times 1.08^{n}=200$ or $1.08^{n}=2$ or for $1.08^{9}=1.99 \ldots$ soi or for two correct trials using a valid relationship seen C opportunity
Communication in 2 of 2(a)(iii), 3, 4(b), 6(a) or 6(b)		2	$\mathbf{C 1}$ if seen in 1 of them

