Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43
Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0607	43

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Mark	Part Marks
1 (a) (i) (ii) (b) (i) (ii)	$\begin{aligned} & 43 \\ & 14.5 \text { or } 14.54 \text { to } 14.55 \\ & 3.16 \times 10^{11} \text { or } 3.158 \ldots \times 10^{11} \\ & 8.23 \times 10^{7} \text { or } 8.228 \ldots \times 10^{7} \end{aligned}$	1 1 2 2	B1 for figs 316 or $3158 \ldots$ or $k \times 10^{11}$ where $1 \leq k<10$ B1 for figs 823 or 8228 ... or $k \times 10^{7}$ where $1 \leq k<10$
2 (a) (i) (ii) (b)	276480×0.25 oe $0.75 \times 276480 \times 0.055 \times 10$ oe adding with no errors 19 nfww 256000	M1 M1 M1 4 3	Dependent on M1 M1 B3 for 18.2 or 18.18... or 18 (with correct working) or M2 for $0.055 \times 276480 \times n=0.25 \times 276480+$ $0.055 \times 0.75 \times 276480 \times n$ oe or M1 for $0.055 \times 276480 \times n$ or $0.25 \times 276480+$ $0.055 \times 0.75 \times 276480 \times n$ M2 for $276480 \div 1.08$ oe or M1 for $108 \%=276480$
3 (a) (b) (c)	Reflection $x=-2$ Rotation 90° [anticlockwise] oe $(5,1)$ Stretch x-axis oe invariant [stretch factor] 3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	In all three parts of (a) give 0 for any indication of second transformation.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0607	43

Question	Answer	Mark	Part Marks
4 (a) (i) (ii) (b) (i) (ii)	96 8.54 or $8.544 \ldots$ 84 122 or 121.8 to 121.9	2 2 3FT 5	M1 for $\frac{1}{3} \times 6 \times 6 \times 8$ M1 for $8^{2}+3^{2}$ M2 for $\frac{7}{8} \times$ their (a)(i) oe or M1 for $96 \times\left(\frac{1}{2}\right)^{3}$ or $\frac{1}{3} \times 3 \times 3 \times 4$ soi by 12 M3 for $4 \times \frac{3}{4} \times \frac{1}{2} \times 6 \times$ their (a)(ii) oe or $4 \times \frac{1}{2} \times(6+3) \times \frac{1}{2}$ their (a)(ii) oe or M2 for $\frac{3}{4} \times \frac{1}{2} \times 6 \times$ their (a)(ii) oe or $\frac{1}{2} \times(6+3) \times \frac{1}{2}$ their (a)(ii) oe or M1 for $\frac{1}{2} \times 6 \times$ their (a)(ii) or $\frac{1}{2} \times 3 \times \frac{1}{2}$ their (a)(ii) and M1 for $36+9+4 \times$ their trapezium area oe
5 (a) (b) (c) (i) (ii) (d)		1 1 3 1FT 1 1 1	B1 for correct cubic shape with maximum on left of minimum or $(-1.155$ to $-1.154,9.079 \ldots)$ or (1.154 to $1.155,2.920$ to 2.921) B2 for either maximum or minimum or B1 for 1 correct value or above accuracy.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0607	43

Question	Answer	Mark	Part Marks
6 (a) (b) (c)	$(4,-1),(-6,-1),(8,7)$ $(13,7)$ $y=-\frac{7}{4} x-\frac{11}{4}$ oe	2	B1 for each B1 for each co-ordinate isw correct 3 term equation B1 for $\frac{4}{7}$ B1FT for $-\frac{7}{4}$ M1 for correct method of finding ' c '.
$7 \quad$ (a) (i) (ii) (iii) (iv) (v) (b)	$\begin{aligned} & {[6], 18,40,77,97,114,[120]} \\ & \text { Correct curve } \\ & 7100 \text { to } 7400 \\ & 750 \text { to } 1150 \\ & 9 \text { or } 10 \text { or } 11 \\ & \text { Correct graph } \end{aligned}$	1 3 1FT 2 1 4	All marks in (a) dependent on increasing cumulative frequencies B2FT for 6 points correctly plotted B1FT for 4 or 5 points correctly plotted If 0 scored SC1 for 'correct' curve translated consistently to left. FT their graph B1 for $\mathrm{LQ}=6700$ to 6900 or $\mathrm{UQ}=7650$ to 7850 B3 for 6 correct heights or B2 for 4 or 5 correct heights or B1 for 2 or 3 correct heights B1 for correct widths If 0 scored $\mathbf{B 1}$ for correct frequency densities [0.006], $0.024,0.044,0.074,0.04,0.017,0.006$
$8 \quad$ (a) (b) (c) (d)	$360-(155+115)$ oe 36.9 or 36.86 to 36.87 100 or 99.93 to 100.04 94.0 or 94.1 or 94.01 to 94.06	4	e.g. $25+65$ with those angles marked on diagram M1 $\tan [C]=\frac{60}{80}$ oe M1 for $60^{2}+80^{2}$ oe B1FT for $A C D=63.1$ to 63.13 M1 for $75^{2}+(\text { their } 100)^{2}-2 \times 75 \times$ their $100 \times \cos$ their 63.1 A1 for 8838 to 8846

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0607	43

Question	Answer	Mark	Part Marks
(e)	123 or 123.4 to 123.5	4	M2 for $\frac{75 \sin \text { (their } 63.1 \text {) }}{\text { their } 94.1}$ or for $[\cos =] \frac{(\text { their } 100)^{2}+(\text { their } 94.1)^{2}-75^{2}}{2 \times(\text { their } 100) \times(\text { their } 94.1)}$ or M1 for $\frac{\sin C A D}{75}=\frac{\sin (\text { their } 63.1)}{\text { their } 94.1}$ or for $75^{2}=(\text { their } 100)^{2}+(\text { their } 94.1)^{2}$ - 2(their 100$)($ their 94.1$)$ A1 for 45.3 or 45.4 or 45.29 to 45.37
$9 \quad$ (a) (b) (i) (ii) (iii)	9 hours 52 mins $\frac{270}{x}$ $\frac{270}{x}+\frac{490}{x+4}=62 \mathrm{oe}$ $270(x+4)+490 x=62 x(x+4)$ oe Completion with no errors $(31 x+54)(x-10)$ 10 and $-\frac{54}{31}$ or 10 because x cannot be negative 14 cao	3 1 M1 M1 A1 M1 B2 B1	B2 for 9.870... or M1 for $760 \div 77$ Could be over common denominator Must be at least one intermediate step or correct substitution into formula or reasonable sketch or B1 for either 10 without support scores only the B1
(a) (i) (ii) (b) (i)	$\begin{aligned} & (2 x-1)(x-1) \\ & \frac{(2 x+1)(x-2)+3}{x-2} \text { oe } \\ & \frac{2 x^{2}-4 x+x-2+3}{x-2} \\ & \frac{2 x^{2}-3 x+1}{x-2} \end{aligned}$	2 M1 A1 A1 2	SC1 for $(2 x+a)(x+b)$ where $a b=1$ and $a+2 b=-3$ Allow $-3 x$ for $-4 x+x$ With no undue overlap at $x=2$ or serious curving back B1 for either branch correct

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0607	43

Question	Answer				Mark	Part Marks
(ii) (iii) (iv)	Correct line $\begin{aligned} & y=2 x+1 \\ & x=2 \end{aligned}$ 0.5 1				1 1 1	Not intersecting either branch B1 for line with positive gradient and positive y intercept
11 (a) (b) (c)	Male Female Total $\frac{462}{2450}$ oe $\frac{384}{756}$ oe	Walking $[16]$ 12 28	Cycling 13 9 $[22]$	Total $[29]$ 21 $[50]$	2 3	B1 for 3 or 4 correct M1 for $\frac{22}{50} \times \frac{21}{49}$ oe M2 for $\frac{16}{\text { their } 28} \times \frac{\text { their } 12}{\text { their } 28-1}+\frac{\text { their } 12}{\text { their } 28} \times \frac{16}{\text { their } 28-1} \text { oe }$ or M1 for one of above products
12 (a) (b) (c)	$\begin{aligned} & y=\frac{10}{\sqrt{x}} \\ & \frac{100}{9} \mathrm{oe} \\ & a=4000, r \end{aligned}$	$=-\frac{3}{2}$			2 2FT 3	M1 for $y=\frac{k}{\sqrt{x}}$ $\mathbf{M 1}$ for $3 \sqrt{x}=$ their k B2 for either or M1 for $z=c\left(\frac{\text { their } k}{\sqrt{x}}\right)^{3}$ oe

