	Cambridge	ucation	
	CANDIDATE NAME		
۰ <u>ــــــــــــــــــــــــــــــــــــ</u>	CENTRE NUMBER	CANDIDATE NUMBER	
	CAMBRIDGE	INTERNATIONAL MATHEMATICS	0607/43
0 0	Paper 4 (Exter	nded)	October/November 2016
			2 hours 15 minutes
0	Candidates an	nswer on the Question Paper.	
Ο ω ω *	Additional Mat	terials: Geometrical Instruments Graphics Calculator	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

You may use an HB pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Unless instructed otherwise, give your answers exactly or correct to three significant figures as appropriate. Answers in degrees should be given to one decimal place.

For π , use your calculator value.

You must show all the relevant working to gain full marks and you will be given marks for correct methods, including sketches, even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 120.

This document consists of 19 printed pages and 1 blank page.

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A, of cy	linder of radius r, height h.	$A = 2\pi r h$
Curved surface area, A, of co	one of radius r , sloping edge l .	$A = \pi r l$
Curved surface area, A, of sp	here of radius <i>r</i> .	$A = 4\pi r^2$
Volume, <i>V</i> , of pyramid, base	area A , height h .	$V = \frac{1}{3}Ah$
Volume, <i>V</i> , of cylinder of rac	lius r, height h.	$V = \pi r^2 h$
Volume, <i>V</i> , of cone of radius	r, height h.	$V = \frac{1}{3}\pi r^2 h$
Volume, V, of sphere of radiu	1S <i>r</i> .	$V = \frac{4}{3}\pi r^3$
\bigwedge^A		$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
c b		$a^2 = b^2 + c^2 - 2bc\cos A$
		Area $=\frac{1}{2}bc\sin A$

С

a

Answer **all** the questions.

1 (a) Work out.

(i) $\sqrt[3]{79507}$

		[1]
(ii)	$3.6^2 + \frac{1}{0.63}$	

(b)
$$p = 5.62 \times 10^5$$
 $q = 6.83 \times 10^{-3}$

Work out, giving your answers in standard form.

(i) p^2

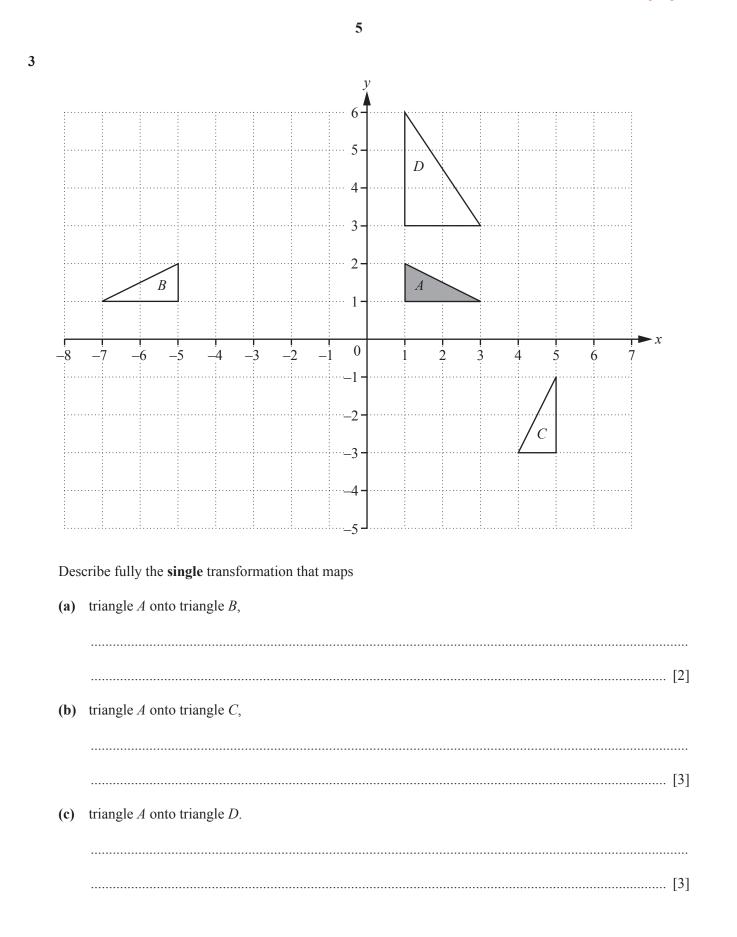
......[2]

......[1]

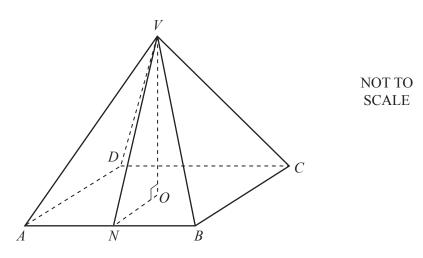
(ii) $\frac{p}{q}$

[3]

- 2 Gennaro has \$276480 in his Pension Fund.
 - (a) Gennaro has two options.
 - Option A Receive 25% of the \$276480 now plus 5.5% of the remaining 75% each year.
 - Option B Receive 5.5% of the whole \$276480 each year.
 - (i) Show that the total amount Gennaro will have received at the end of 10 years, if he chooses option A, is \$183168.


(ii) After how many whole years will the total amount received using option B become more than the total amount received under option A?

.....[4]


(b) The \$276480 is 8% more than the amount the Pension Fund was worth one year ago.

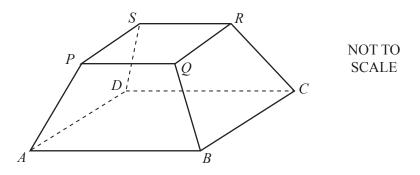
Calculate how much it was worth one year ago.

\$[3]

4

The diagram shows a solid, square-based pyramid *VABCD*. *O* is the centre of the base *ABCD* and *VO* is perpendicular to the base. *N* is the midpoint of *AB*. AB = 6 cm and VO = 8 cm.

(a) Calculate

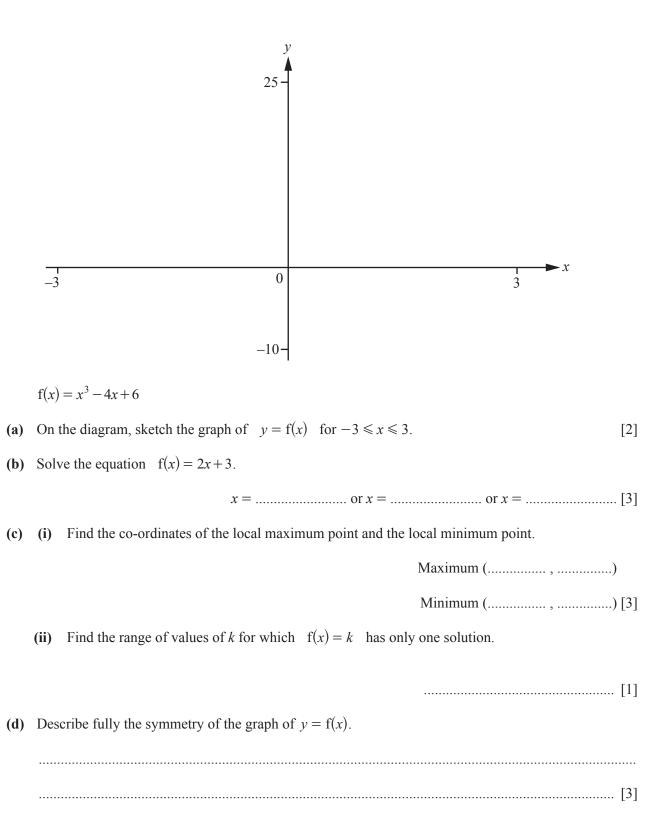

(i) the volume of the pyramid,

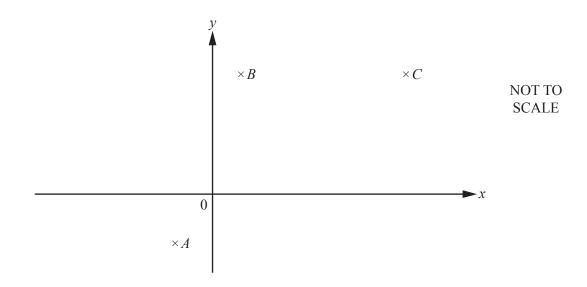
..... cm³ [2]

(ii) the length of VN.

..... cm [2]

(b) The similar pyramid *VPQRS* is removed from the original pyramid to leave the solid below.


The height of this solid is half the height of the pyramid VABCD.


(i) Find the volume of this solid.

..... cm³ [3]

(ii) Find the total surface area of this solid.

٠		,

The diagram shows the points A(-1, -1), B(1, 3) and C(6, 3).

(a) The points *A*, *B*, *C* and *D* are the vertices of a parallelogram.

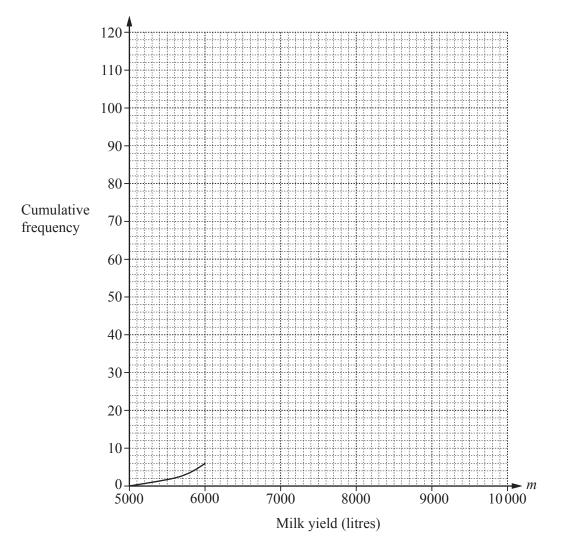
Write down the co-ordinates of the three possible positions of D.

(b) E is a point such that C is the midpoint of the line AE.

Find the co-ordinates of the point E.

(.....)[2]

(c) The line *L* is perpendicular to the line *AC* and goes through *A*.Find the equation of the line *L*.


......[4]

7 A farmer measured the milk yield of each of his 120 cows over a one-year period. The results are shown in the frequency table.

Milk yield (<i>m</i> litres)	Frequency
$5000 < m \le 6000$	6
$6000 < m \le 6500$	12
$6500 < m \leqslant 7000$	22
$7000 < m \leqslant 7500$	37
$7500 < m \le 8000$	20
$8000 < m \le 9000$	17
$9000 < m \le 10000$	6

Milk yield (<i>m</i> litres)	Cumulative frequency
<i>m</i> ≤ 6000	6
$m \leq 6500$	
<i>m</i> ≤ 7000	
<i>m</i> ≤ 7500	
<i>m</i> ≤ 8000	
<i>m</i> ≤ 9000	
<i>m</i> ≤ 10 000	120

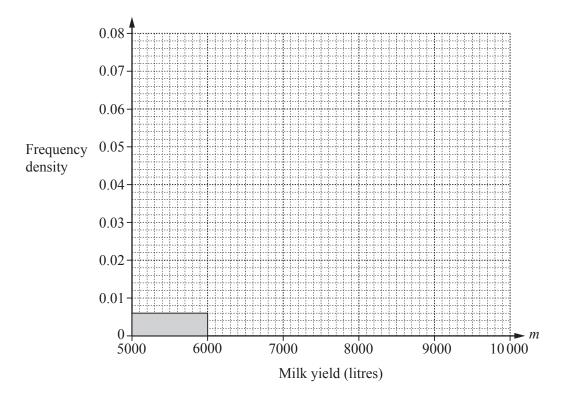
- (a) (i) Complete the cumulative frequency table.
 - (ii) Complete the cumulative frequency curve.

[3]

[1]

11

- (iii) Use your graph to estimate the median.
- (iv) Use your graph to estimate the inter-quartile range.
- (v) The farmer sells the cows with a milk yield of less than 6200 litres.

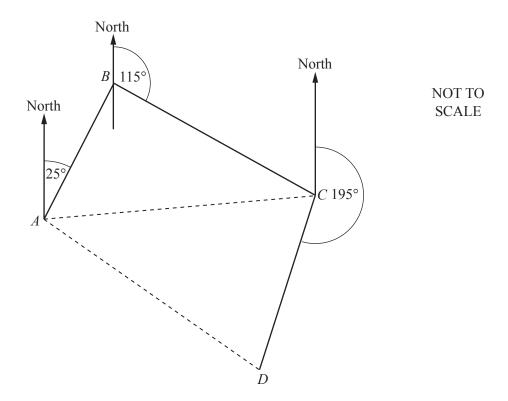

Use your graph to estimate the number of cows he sells.

......[1]

..... litres [1]

..... litres [2]

(b) On the grid below, complete the histogram to represent the data in the first table.



[4]

[1]

- 8 A ship sails on the following course.
 - $60 \text{ km on a bearing of } 025^{\circ} \text{ from } A \text{ to } B$
 - 80 km on a bearing of 115° from *B* to *C*
 - 75 km on a bearing of 195° from C to D

The diagram shows the course.

(a) Show that angle $ABC = 90^{\circ}$.

(b) Calculate angle *BCA*.

Angle $BCA = \dots$ [2]

(c) Calculate the distance *AC*.

 $AC = \dots km [2]$

(d) Calculate the distance *AD*.

AD = km [4]

(e) Calculate the bearing of *D* from *A*.

.....[4]

- 9 Justine travels 760 km in her car.
 - (a) Justine's average speed for the journey is 77 km/h.

Calculate the time Justine takes to complete the journey. Give your answer in hours and minutes correct to the nearest minute.

...... h min [3]

- (b) Justine travels 270 km on main roads and 490 km on autoroutes. On main roads her car travels x km on each litre of fuel. On autoroutes her car travels (x+4) km on each litre of fuel.
 - (i) Write down an expression, in terms of x, for the fuel that Justine's car uses on main roads on this journey.

..... litres [1]

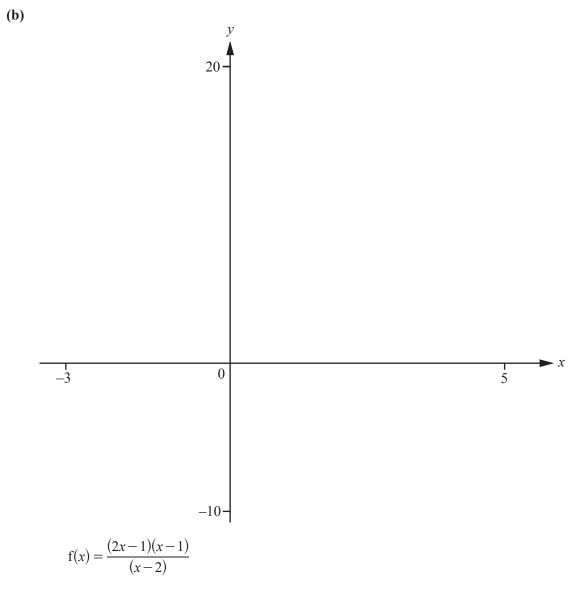
(ii) Altogether Justine's car uses 62 litres of fuel for the whole journey.

Write down an equation in x and show that it simplifies to $31x^2 - 256x - 540 = 0$.

(iii) Solve the equation $31x^2 - 256x - 540 = 0$ to find the distance Justine's car travels on 1 litre of fuel on autoroutes.

15

..... km [4]


[3]

[2]

10 (a) (i) Factorise.

$$2x^2 - 3x + 1$$

(ii) Show that
$$2x+1+\frac{3}{x-2}$$
 can be written as $\frac{(2x-1)(x-1)}{(x-2)}$.

(i) On the diagram, sketch the graph of y = f(x) for values of x between -3 and 5.

(ii)	On the same diagram, sketch the graph of $y = 2x + 1$.		[2]
(iii)	Write down the equations of the asymptotes to the graph of	y = f(x).	
			[2]
(iv)	Solve $f(x) = 0$.		

11 The 50 members of an activities group either go walking or cycling. The table shows the choices of the males and females.

	Walking	Cycling	Total
Male	16		29
Female			
Total		22	50

- (a) Complete the table.
- (b) Two of the 50 members are chosen at random.

Calculate the probability that they both go cycling.

(c) Two of those who go walking are chosen at random.

Calculate the probability that one is a male and the other is a female.

.....[3]

[2]

- 12 *y* is inversely proportional to the square root of *x*. When x = 25, y = 2.
 - (a) Find y in terms of x.

(b) Find the value of x when y = 3.

......[2]

(c) $z = ax^n$

z is proportional to the cube of *y*. When x = 4, z = 500.

Find the value of *a* and the value of *n*.

 $a = \dots$ $n = \dots [3]$

© UCLES 2016

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.