Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/61
Paper 6 (Extended)
May/June 2017
MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer						Marks	Part Marks
A	INVESTIGATION VIRUS							
1(a)	7, 9						1	
1(b)	$2 n-1$ oe						1	C opportunity
1(c)	49						1	C opportunity
2(a)							1	
2(b)	12, 16						2	B1 for each C opportunity
2(c)	$[p=] 4 n-4$ oe						2	M1 for $4 n$ seen C opportunity
2(d)	25,41						1	
2(e)	$[t=] 2 n^{2}-2 n+1$ oe						2	M1 for $2 n^{2}$ soi
2(f)	Substitution leading to 61 and correct diagram or continued sequence of $25,41,61$ with differences of 16,20 seen						2	B1 for each
2(g)	11						2	M1 for 11 and - 10 or for continuation of the sequence from 61 as $85,113,145,181$, 221 C opportunity

Question	Answer	Marks	Part Marks
3(a)	$[8] 11,15,$,19 with supporting-diagram(s) seen and $\begin{aligned} & 4(2)+3=11,4(3)+3=15 \\ & 4(4)+3=19 \text { soi } \end{aligned}$ or solving $4 n+3=11,4 n+3=15,4 n+3=19$ to obtain $n=2,3,4$ or differences of 4 implying $4 n+k$ and substituting at least one of $n=2,3,4, \ldots$ to find k	2	B1 for each or B1 for any two correct values found from diagrams and verified by calculation
3(b)	$2 n^{2}+5 n+1$ oe	2	M1 for $19,34,53$ seen C opportunity
Communication: Seen in three of the following questions		1	
1 b or 2c or 2 e	At least 3 differences of 2 seen; may be in table in 1(a) At least 3 differences of 4 seen ; may be in table in 2(b) For 2 rows of differences with at least 3 differences in the 2nd row; may be in table in 2(d)		
1 c	$97=$ their $(2 n-1)$ seen oe or algebraic change of subject of their $t=2 n-1$ seen and then $n=\frac{97+1}{2}$ or continuation of sequence (need not be term by term)		
2b	At least one more correct diagram drawn		
2 g	Attempt at correct method to solve their 3-term quadratic equation in n e.g. if correct, $(2 n-22)(n+10)=0$ or $(n-11)(n+10)=0$ $\begin{align*} & n=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 2 \times-220}}{2(2)} \text { or } \tag{or}\\ & n=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 1 \times-110}}{2} \end{align*}$ or sketch of relevant graphs		
3 b	For 19, 34, 53, 76, [103] seen and two rows of differences		

Question	Answer	Marks	Part Marks
A	MODELLING SCOUT'S PACE		
1	$1 \mathrm{~km}=1000 \mathrm{~m}$ oe and $1 \mathrm{~h}=60 \mathrm{~min}$ or $1 \mathrm{~min}=\frac{1}{60} \mathrm{~h}$ oe	1	
2(a)	$\frac{5 \times 1000}{60} \text { oe seen }$	1	
2(b)	awrt 20.8 or $20 \frac{5}{6}$ isw	1	C opportunity
2(c)	awrt 33.3 or $33 \frac{1}{3}$ isw	1	C opportunity
3(a)	$\left(\frac{30}{120}+\frac{30}{150}\right) \times 60$ oe or $\frac{60}{5}+\frac{60}{4}$ oe or $\left(\frac{20 \frac{5}{6}}{83 \frac{1}{3}}+\frac{33 \frac{1}{3}}{166 \frac{2}{3}}\right) \times 60 \mathrm{oe}$ or Walking: $\frac{120}{60}=2$ $\frac{30}{2}=15$ Jogging: $\frac{150}{60}=2.5$ $\begin{aligned} & \frac{30}{2.5}=12 \\ & 15+12=27 \end{aligned}$	1	
3(b)	$2[.00]$ to 2.01 nfww	1	FT \qquad C opportunity
3(c)	7.2[0] to 7.236	1	FT their (b) $\times 3.6$ C opportunity
4(a)	$\frac{30 x}{120} \times \frac{1000}{60} \text { oe or } \frac{20 \frac{5}{6} x}{83 \frac{1}{3}} \times \frac{1000}{60} \text { leading to } \frac{25}{6} x$	1	

Question	Answer	Marks	Part Marks
4(b)	$\frac{\frac{25 x}{6}+\frac{10 y}{3}}{27} \mathrm{oe}$	M1	Allow this mark for total dist / time attempt i.e. for correct numerator over a constant; ignore units for this mark
	their $\left(\frac{\frac{25 x}{6}+\frac{10 y}{3}}{27}\right) \times \frac{60^{2}}{1000}$ oe	M1	Allow $\times 3.6$
	Correct simplification to $\frac{5 x+4 y}{9}$	A1	Note: Answer is given so evidence must be seen; must have at least one interim step $\operatorname{after}\left(\frac{\frac{25 x}{6}+\frac{10 y}{3}}{27}\right) \times \frac{60^{2}}{1000} \text { seen }$
	Alternative method using ratios and the approach $\frac{\text { speed }_{1} \times \text { time }_{1}+\text { speed }_{2} \times \text { time }_{2}}{\text { time }_{1}+\text { time }_{2}}$ $\frac{\frac{15 x}{3600}+\frac{12 y}{3600}}{\frac{27}{3600}} \text { or } \frac{\frac{x}{240}+\frac{y}{300}}{\frac{3}{400}} \text { oe }$	M1	Or two times given as a ratio $a: b$ equivalent to $5: 4$ or $b: a$ equivalent to 4 : 5 e.g. $15: 12$ or $12: 15$ or $0.2: 0.25$
	$\frac{15 x+12 y}{27} \text { or } \frac{\frac{5 x}{1200}+\frac{4 y}{1200}}{\frac{9}{1200}}$	DM1	$\frac{a x+b y}{a+b}$ with correct values of a and b
	completion to given answer $\frac{5 x+4 y}{9}$	A1	If 0 scored, $\mathbf{S C 1}$ for $\frac{15 x+12 y}{27}=\frac{5 x+4 y}{9} \text { only }$
4(c)	$\frac{13 x}{9}$ oe isw	2	M1 for $\frac{5 x+4 \times 2 x}{9}$ oe or $\frac{5 x+8 x}{9}$ C opportunity
4(d)	$\frac{17 x}{8}$ oe or $2.125 x$ isw	2	$\text { M1 for } \frac{5 x+4 y}{9}=1.5 x$
4(e)	$4.6 \text { oe or } 4 \frac{3}{5}$	2	M1 for $\frac{5 x+4 \times 10}{9}=7 \mathrm{oe}$ C opportunity

Question	Answer	Marks	Part Marks
5	$[S=] \frac{6 x+5 y}{11}$	2	M1 for $\frac{25}{9} y$ oe or 22 seen or 12 and 10 seen or $\frac{1}{5}$ and $\frac{1}{6}$ oe seen or $\frac{1}{300}$ and $\frac{1}{360}$ oe seen C opportunity
Communication: Seen in three of the following questions		1	
2 b	for $\frac{83.3}{4}$ or $\frac{5 \times 1000}{4 \times 60}$ oe; may be in steps or e.g. $120: 83.3$ and $30: x$ compared or e.g. $\frac{120}{83.3}=\frac{30}{x}$		
2c	for $\frac{10 \times 1000}{60 \times 5}$ or $\frac{83.3 \times 2}{5}$ oe or e.g. $150: 166.6$ and $30: x$ compared or e.g. $\frac{150}{166.6}=\frac{30}{x}$		
3 b	$\text { for } \frac{\text { their }(20.8+33.3)}{27} \text { or e.g. } \frac{\text { their }(54.1)}{27}$ seen or for comparison of ratios e.g. $\begin{aligned} & 54.1 \text { to } 27 \\ & x \text { to } 1 \end{aligned}$		
3 c	for multiplying by a correct conversion factor e.g. $\frac{(\text { their } 2.01) \times 60 \times 60}{1000}$ or $\frac{(\text { their } 2.01) \times 3600}{1000}$ or (their 2.01) $\times 3.6$ seen Note: Division by 1000 may be implied by sight of m / h and km / h etc.		
4 c	for correct units seen e.g. $\frac{13 x}{9} \mathrm{~km} / \mathrm{h}$		
4 e	for correct units e.g. $4.6 \mathrm{~km} / \mathrm{h}$		
5	for showing how to get 22 e.g. $\left(\frac{30}{150}+\frac{30}{180}\right) \times 60$ or for showing how to get 10 e.g. $\frac{30}{180} \times 60$; may be in steps or for a correct step in simplification of their $\left(\frac{\frac{10 x}{3}+\frac{25 y}{9}}{22}\right) \times \frac{60^{2}}{1000}$ towards answer		

