Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/43
Paper 4 (Extended) May/June 2022
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

```
Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
```

Question	Answer	Marks	Partial Marks
1(a)	2621.93	2	M1 for $2500 \times\left(1+\frac{1.6}{100}\right)^{3}$ oe
1(b)	1.75	3	M2 for $2500 \times \frac{r}{100} \times 5=2718.75-2500$ oe or M1 for $2500 \times \frac{r}{100} \times 5$ or $\frac{2718.75-2500}{5}$ (43.75) or 8.75 seen
1(c)	31	4	B3 for 30.55 to 30.56 OR M3 for $n \log \left(1+\frac{1.55}{100}\right)=\log \left(\frac{4000}{2500}\right)$ oe or correct trials as far as 30 and 31 or good sketch indicating value between 30 and 31 or $\mathbf{M} \mathbf{2}$ for $\left(1+\frac{1.55}{100}\right)^{n}=\frac{4000}{2500}$ oe or at least 3 correct trials or sketch that could lead to solution e.g. $y=1.0155^{x}$ and $y=\frac{4000}{2500}$ or M1 for $2500 \times\left(1+\frac{1.55}{100}\right)^{n}=4000$ soi. or at least 2 correct trials
2(a)	7.48	2	M1 for evidence of mid-values
2(b)	6.57 .5	1	
2(c)(i)	Correct cf curve through 6 points	4	B3 for curve through 5 correct points or $\mathbf{B} \mathbf{2}$ for curve through 4 correct points or correct cfs [9], 27, 54, 73, 89, 100 or B1 for curve through 4 correct points or 3,4 or 5 cfs
2(c)(ii)	7.2 to 7.4	1	FT Only from increasing diagram
2(c)(iii)	2.0 to 2.4	2	B1FT for $\mathrm{lq}=6.3$ to 6.5 or $\mathrm{uq}=8.5$ to 8.7 FT only from increasing diagram
2(c)(iv)	34 to 38	2	B1 FT for 62 to 66 seen
3(a)	Triangle at (1,0$),(-5,0),(-5,-3)$	2	B1 for enlargement with centre $(4,3)$ wrong scale factor or enlargement scale factor 3 with wrong centre.
3(b)(i)	Translation $\binom{-5}{2}$	2	B1 for each

Question	Answer	Marks	Partial Marks
3(b)(ii)	Stretch Invariant line $y=4$ [Factor] 2	3	B1 for each
3(c)	e.g. $(7,2) x=5.5$ $(6,3) x=4.5$ $(8,1) x=6.5$ $(9,0) x=7.5$ $(5,4) x=3.5$ $(4,5) x=2.5$ $(3,6) x=1.5$	2	B1 for point on $x+y=9$ and $x=k$
4(a)	2.5 oe	2	M1 for $4 x=7+3$ oe
4(b)	-6.95	2	M1 for correct substitution or $\mathbf{B 1}$ for 13.9 seen
4(c)	correctly equating one set of coefficients	M1	Allow one incorrect number or making x or y the subject of 1 equation
	Correct method to eliminate one variable	M1	e.g. Adding, subtracting substitution
	$x=5, y=2$	A2	A1 for either nfww. If 0 scored, $\mathbf{S C 1}$ for a pair of numbers that satisfy either equation or for correct solutions with no working.
4(d)	$\frac{4 x}{y(x-2)}$ oe final answer	4	B1 for $2 x(x+2)$ B1 for $(x-2)(x+2)$ M1 for inverting and changing sign to multiplication at any stage
5(a)		2	B1 for any cubic
5(b)	(-1.29, 7.3[0])	2	$-1.291 \text { to }-1.290 \ldots 7.303 \ldots$ B1 for each
5(c)	Rotational Order 2 $(0,3)$	3	B1 for each

Question	Answer	Marks	Partial Marks
5(d)	$\begin{aligned} & -2.49 \text { or }-2.491 \text { to }-2.490 \\ & 0.657 \text { or } 0.6566 \ldots \\ & 1.83 \text { or } 1.834 \ldots \end{aligned}$	3	B1 for each If 0 scored SC1 for $-2.5,0.66$ and 1.8
5(e)(i)	Correct Sketch with y intercept below the y-intercept of $\mathrm{f}(x)$	2	B1 for any U shaped quadratic
5(e)(ii)	$\begin{aligned} & -1.48 \text { or }-1.481 \ldots \\ & 0.311 \text { or } 0.3111 \ldots \\ & 2.17 \text { or } 2.170 \ldots \end{aligned}$	3	B1 for each If 0 scored, $\mathbf{S C} 1$ for $-1.5,0.31$ and 2.2
6(a)	$\frac{2}{3} \sqrt{12^{2}-6^{2}} \text { oe }$	M3	M2 for $12^{2}-6^{2}$ or M1 for attempt at Pythagoras e.g. $B D^{2}+6^{2}=12^{2}$
	6.9282...	A1	
6(b)	204 or 203.6 to 203.7	4	M1 for $\sqrt{12^{2}-6.928^{2}}$ M1 for $0.5 \times 12 \times 12 \times \sin 60$ or $0.5 \times$ their $B D \times$ 12 M1 for $\frac{1}{3} \times$ their $62.35 \times$ their 9.798 dependent on use of Pythagoras and not $B D$ or $B O$.
7(a)	Correct shading	2	B1 for each
7(b)(i)	$\frac{4}{7} \mathrm{oe}$	1	
7(b)(ii)	$\frac{9}{35} \text { oe }$	2	M1 for $\frac{3}{7} \times \frac{6}{10}$ oe
7(b)(iii)	$\frac{22}{45} \text { oe }$	3	M2 for $\frac{3}{7} \times \frac{4}{10}+\frac{4}{7} \times \frac{5}{9}$ oe or M1 for one of above products
8(a)	140	1	

Question	Answer	Marks	Partial Marks
8(b)	$\begin{aligned} & 360-(120+125) \text { or } 60+55 \\ & \text { or } 180+55-120 \end{aligned}$	1	
8(c)(i)	178 or 177.5...	3	M2 for $\begin{aligned} & \sqrt{\left((\text { their } 140)^{2}+65^{2}-2 \times(\text { their } 140) \times 65 \times \cos 115\right)} \\ & \text { OR } \\ & \text { M1 for }(\text { their } 140)^{2}+65^{2} \\ & -2 \times(\text { their } 140) \times 65 \times \cos 115 \end{aligned}$
8(c)(ii)	254 or 255 or 254.3 to $254.5 \ldots$	4	M2 for $\sin [C]=\frac{\text { their } 140 \sin 115}{\text { their } 178}$ oe or M1 for $\frac{\sin [C]}{\text { their } 140}=\frac{\sin 115}{\text { their } 178}$ oe A1 for 45.18 to 45.63 M1 for 360-60-their C oe calculated as answer
8(d)	20.3 or 20.26 to $20.31 \ldots$	3	$\begin{aligned} & \text { M2 for } \frac{\text { their } 140+65+\text { their } 178}{7+3.6+\frac{\text { their } 178}{21.5}} \\ & \text { or M1 for } \frac{\text { their } 178}{21.5} \end{aligned}$ $\text { or for clear indication of } \frac{\text { totaldistance }}{\text { total time }}$
9(a)(i)	14	1	
9(a)(ii)	-46	2	B1 for $\mathrm{f}(16)$ or M1 for $2-3(x+1)^{2}$ soi
9(a)(iii)	$-\frac{2}{3} \mathrm{oe}$	2	M1 for $2-3 x=4$ or $\frac{2-x}{3}$
9(a)(iv)	100	2	M1 for $\log x=2$ or 10^{x}
9(b)	$\frac{3}{5} \text { oe }$	3	M2 for $1=5(2-3 x)$ oe or M1 for $\frac{1}{2-3 x}[=5]$
9(c)	$9 x^{2}-18 x+9$	3	M1 for $(2-3 x+1)^{2}$ M1FT for $3^{2}-3 \times 3 x-3 \times 3 x+(3 x)^{2}$
9(d)	$\frac{2-10^{y}}{3} \mathrm{oe}$	3	M2 for $10^{y}=2-3 x$ or M1 for $y \operatorname{orh}(x)=\log (2-3 x)$ or for 10^{y} seen
10(a)(i)	62	1	
10(a)(ii)	54	1	
10(a)(iii)	36	1	FT 90 - their $B A D$

Question	Answer	Marks	Partial Marks
10(a)(iv)	126	1	
10(a)(v)	126	1	
10(b)	$\begin{aligned} & {[a=] 36} \\ & {[b=] 12} \end{aligned}$	5	B3 for $36 \sqrt{3}$ or M1 for $[A P=] 6 \tan 60$ oe $(6 \sqrt{3})(10.392 \ldots)$ M1 for $2 \times \frac{1}{2} \times 6 \times$ their $6 \sqrt{3}$ oe ($62.35 \ldots$...) B2 for 12π or M1 for $\frac{120}{360} \times \pi \times 6^{2}$ (37.699...)
11(a)	$\frac{400}{x}$	1	
11(b)	$\frac{400}{x-2}-\frac{400}{x}=10 \mathrm{oe}$	M1	
	$400 x-400(x-2)=10 x(x-2)$	M1	FT clearing fractions. Dep on equation in the right form
	$\begin{aligned} & -400 x+800 \text { or } 400 x-800 \\ & \text { and } 10 x^{2}-20 x \end{aligned}$	M1	FT Expansion of both brackets of correct form
	Completion to $x^{2}-2 x-80=0$ with no errors or omissions	A1	
11(c)	22 min 13 sec	4	B2 for $x=10$ isw other value of x or M1 for $(x-10)(x+8)$ $\text { or } \frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-80)}}{2 \times 1}$ or sketch of parabola with one positive zero and one negative zero $\text { M1 for } \frac{400}{\text { their } 10+\text { their } 10-2}$

