MARK SCHEME for the June 2004 question papers

0652 PHYSICAL SCIENCE

0652/01

0652/02
0652/03
0652/05
0652/06

Paper 1 (Multiple Choice), maximum raw mark 40

Paper 2 (Core), maximum raw mark 80
Paper 3 (Extended), maximum raw mark 80
Paper 5 (Practical), maximum raw mark 30
Paper 6 (Alternative to Practical), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the June 2004 examinatic

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 1	40	36	28	21	17
Component 2	80	-	45	29	24
Component 3	80	49	31	19	14
Component 5	30	23	19	16	14
Component 6	60	51	37	24	18

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E . The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0652/01
PHYSICAL SCIENCE
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus
	PHYSICAL SCIENCE - JUNE 2004	0652

Question Number	Key	Question Number	Key
1	C	21	D
2	D	22	A
3	D	23	D
4	C	24	D
5	B	25	D
		26	
6	C	27	A
7	B	28	D
8	A	29	A
9	B	30	C
10	A		
		31	C
11	D	32	D
12	C	33	C
13	A	34	A
14	A	35	C
15	D		
		36	A
16	C	37	A
17	C	38	D
18	D	39	D
19	A	40	B
20	D		

TOTAL 40

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE
Paper 2 (Core)

Page 1	Mark Scheme	Syllabu:

1
(a) Points correctly plotted (-1 for each omitted/incorrectly plotted)
Good straight line drawn with ruler
(b) Suitable triangle/figures taken from graph

Clear use of figures
Correct answer $=0.75 \mathrm{~cm}$
(c) $930+/-10 \mathrm{~N}$
(Accept 905 to 955 for 1 mark)
Total
2 (a)
(a) Mark vertically:
$8 ; 8 ; 2,6$
$8 ; 10 ; 2,6$
(Repeated error penalise once only)
(b) Dot-cross diagram sharing pair of electrons

And correct outer shell
(OR H-O-H with correct statement)
Total
3 (a) 3
(b) $12+3+16+1$
$=32$
(c) Forces between molecules stronger in methanol
(Accept other correct statements about hydrogen bonding in methanol, not in carbon dioxide)

4 (a) $\begin{aligned} & \text { Mention of surface area } \\ & \text { Much greater for a powder }\end{aligned}$
4 (a) $\begin{array}{ll}\text { Mention of surface area } \\ \text { Much greater for a powder }\end{array}$
1
1
1
1
[1]
(b) (i) Dilute the acid (accept add water)
(ii) Lower the temperature

5 (a) (Current in the coil) magnetises the core
Attracting the bolt
(b) It is magnetic

And loses its magnetism easily
(c) No current can flow

So bolt remains in situ

Total
[2]
Total

$$
1+1
$$

[4][2]

Page 2	Mark Scheme	Syllabu:
	PHYSICAL SCIENCE - JUNE 2004	0652

6 (a) Potential energy is released
6 (a) Potential energy is released
(Do not accept answers which refer to loss of KE/slowing down of particles)
(b) (i) $330^{\circ} \mathrm{C}+/-5^{\circ} \mathrm{C}$
(ii) P solidifies at one temperature
Q solidifies over a range of temperatures
(a) Potassium is more reactive than magnesium

Total
(b) (i) Energy is released
(ii) Litmus paper/universal indicator

Turns blue/green
1 + 1
(iii) Lighted splint

Causes small explosion/pop 1 +1
(OR is higher up the activity series)

Total
8 (a) Elastic/strain
Kinetic/movement
1
Heath
Wealthermal/internal 1
Work 1
(b) $\quad 2.5 \times 3$
7.5 Ncm
(-1 if no/incorrect unit)
(c) $\quad 48 / 16$
$3 \mathrm{~m} / \mathrm{s}$
(-1 if no/incorrect unit)

Total

9 (a) Combines with haemoglobin (Accept blood)
Preventing oxygen being absorbed
1
Combines with rain water
To form acid (rain)
(b) Combines with rain water 1

Page 3	Mark Scheme	Syllabu:
	PHYSICAL SCIENCE - JUNE 2004	0652

10 (a)

Ethanol:

fully correct \qquad

\qquad1
fully correct
(b) Any TWO from: Fuel, solvent, in drinks

11 (a) Ammeter
Voltmeter
Variable resistor
(b) By changing the resistance 1

The current in the circuit can be changed
1
$\begin{array}{ll}\text { (c) Straight line through the origin OR curve so that } R \text { increases with } & 1 \\ \text { increasing current } \\ \text { In both quadrants }\end{array}$
Total
12
Acidic
Non-metal
Right

13 (a) Filament gets very hot
ANY TWO
Must not be allowed to oxidise/burn
Argon provides inert atmosphere
(b) High density

ANY TWO
$1+1$
High melting point
Transition part of the Periodic Table
High melting point
Transition part of the Periodic Table
Total

13 (a) | Filament gets very hot |
| :--- |
| Must not be allowed to oxidise/burn |
| Argon provides inert atmosphere |

Total

14 (a) (i) Negative

Attracted to positive collector
(ii) Electron 1
(b) Deflect rays* 1

Horizontally 1
Deflect rays* 1
Vertically 1
(* can be scored in either part but only once)
(c) (i) Amplitude smaller but frequency (about) the same

Frequency greater but amplitude (about) the same
Both a good shape

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/03

PHYSICAL SCIENCE
Paper 3 (Extended)

Page 1	Mark Scheme	Syllabu
	PHYSICAL SCIENCE - JUNE 2004	0652

1
(a) (average) mass of one atom (of element) (of normal isotopic mixture) compared to $1 / 12$ mass of one atom of carbon-twelve OR
on a scale on which one atom of carbon-twelve has a mass of 12 exactly
(b) (i) $\mathrm{n}=\mathrm{m} / M_{\mathrm{r}} \quad$ OR $5.0 / 30$ Accept 5 / 30 . number of moles $=0.167$

Accept 1/6, $0.17,0.16$ but not 0.2.
(ii) $(2.0 / 24) \quad$ number of moles $=0.083$

Accept 1/12. Accept 0.08 only if $2 / 24$ shown.
(iii) (answer from (i) \div answer from (ii)) number of moles $=2$

Accept answer from errors carried forward.
(iv) $2 \mathbf{M}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MO}$
$\begin{array}{cc}\text { Answer from (iii) must be used in front of } \boldsymbol{M} . & 1 \\ \text { correct formulae of elements } M \text { and } \mathrm{O}_{2} & 1 \\ \text { balanced using answer from (iii) } & \end{array}$
Total
2
(a) put water into can up to spout
place measuring cylinder under spout and lower object into can (until
immersed)
volume of water displaced into cylinder equals volume of object
(b) (i) $\mathrm{g} / \mathrm{cm}^{3} O R \mathrm{~kg} / \mathrm{m}^{3}$ etc

Symbols must be correct, as listed in the syllabus
(ii) density $=$ mass $/$ volume $O R 15.4 / 0.8$
density $=19.25\left(\mathrm{~g} / \mathrm{cm}^{3}\right) \quad$ numerical answer only
Accept 19.3 or 19.2
(Also accept 19 because volume given only to 1 sig. fig.)
(iii) gold

Accept error forward from (ii)
(iv) ideas of...
$\begin{array}{ll}\text { uncertainty of experimental method } & \mathbf{1} \\ \text { uncertainty of experimental readings } & 1 \\ \text { may not be pure metal } & \mathbf{1}\end{array}$
Accept explanation in terms of significant figures for one mark.

Page 2	Mark Scheme	Syllabu

(c) $\quad 85 \mathrm{~g} \rightarrow 0.085 \mathrm{~kg} \quad O R \quad$ equivalent $\mathrm{W}=\mathrm{mg} \quad O R \quad \mathrm{~g}=\mathrm{W} / \mathrm{m}$

Accept with values inserted whether mass is in grams or kilograms
$\mathrm{g}=1.65 \mathrm{~N} / \mathrm{kg} \quad$ complete answer
Accept unit $\mathrm{m} / \mathrm{s}^{2}$. Symbols in unit must be correct, as listed in syllabus. Accept 1.6 but not 1.7 because $0.14 / 0.085=1.647$

Total

3 (a) increase to silicon then decrease
Ignore P \& S anomaly. Must mention silicon.
(b) strong (forces of attractions between atoms)
due to covalent bonding $O R$ giant (tetrahedral) structure
(c) Any symbols used should be correct, as listed in syllabus
(i) sodium
(ii) phosphorus
(iii) magnesium
(iv) argon
(d) ideas of...
sodium ions have +1 charge and magnesium ions have +2 charge \therefore forces of (attraction) in metallic bonding weaker in sodium than magnesium

Comparison must be clear.

Total

wire connected across voltmeter
1 [1]
Accept, for this circuit, wire connected across battery. Be tolerant with symbol or drawing to represent this wire
(b) $\quad \mathrm{R}=\mathrm{V} / \mathrm{I} \quad \mathrm{OR} 4.3 / 2.1$
resistance $=2.05 \Omega \quad$ numerical value (1) unit (1)
Accept 2.0, 2.04 but not 2.1.
The mark for the unit Ω is a separate mark.
(c) twice the answer from (b)

Ignore unit.
(d)
state resistance of shorter wire likely to be more than expected
explain shorter wire ... (less resistance) more current
\therefore hotter than longer wire
Comparison must be clear.
(e) large current
could overheat ammeter

1

Page 3	Mark Scheme	Syllabu
	PHYSICAL SCIENCE - JUNE 2004	0652

(f) oscilloscope $O R$ c.r.o. $O R$ multimeter

Total

5 (a) (i) $\begin{array}{lll}\text { calcium } & 2,8,8,2 \\ \text { fluorine } & 2,7\end{array}$
(ii) transfer of electrons from calcium atoms to fluorine atoms
forming positive ions $\left(\mathrm{Ca}^{2+}\right)$ and negative ions ($\mathrm{F}-$) that attract
(iii) CaF_{2}

1
1
1
1

1 [1]
Do not accept Fl for fluorine.
(b) solid calcium fluoride ions are held in lattice OR cannot move about 1 molten calcium fluoride ions are free to move about liquid fluorine molecules are not charged 1

Total

6 (a) $\mathrm{n}=8$
(b) speed $=$ distance/time $O R$ time $=$ distance $/$ speed $O R$ time $=80 / 340$ \therefore time $=0.235 \mathrm{~s} \quad$ complete answer (1)
Accept 0.24 s or 0.23 s but not 0.2 s \therefore time $=0.235 \mathrm{~s} \quad$ complete answer (1)
Accept 0.24 s or 0.23 s but not 0.2 s
(c) (i) ideas of...
start: fast speed of light means negligible delay in seeing smoke stop: slow speed of sound gives enough time for observer to respond
(ii) decreases possibility of echoes which would confuse observer
(d) $\quad 3.5 \mathrm{kHz} \rightarrow 3500 \mathrm{~Hz}$ $\mathrm{v}=\mathrm{f} \lambda \quad O R \quad \lambda=\mathrm{v} / \mathrm{f} \quad$ (accept $c=f \lambda$ or $\lambda=c / f$).

Accept with values inserted whether frequency is in kHz or Hz .
wavelength $=0.097 \mathrm{~m} \quad$ complete answer * (1)
Do not accept 0.1 m .

* Only the first incorrect or missing unit is penalised

Total
yeast
temperature less than $40^{\circ} \mathrm{C}$
Do not accept 'warm' on its own.
(b) (i) fractional distillation both words

Page 4	Mark Scheme	Syllabu.
	PHYSICAL SCIENCE - JUNE 2004	0652
(ii)	labelled sketch of laboratory apparatus to show... fractionating column thermometer condenser workable arrangement *	
	* showing flask of solution being heated, vapour rising up fractionating column, thermometer in the top of this column with its bulb opposite tube leading down through water-cooled condenser into collecting vessel; the condenser should have water entering and leaving the outer tube correctly.	
		Total

8 (a) | thermometer |
| :--- |
| changes |
| equal |
| range |
| sensitive |
| examples... |
| liquid-in-glass thermometer |
| volume of liquid depends on temperature |

liquid-in-glass thermometer volume of liquid depends on temperature accept named liquid, mercury or alcohol.
$O R \quad$ thermocouple $\checkmark \quad$ e.m.f depends on temperature \checkmark
(a) to remove impurities (from the ore)

Do not accept 'to form slag' unless 'impurities' are mentioned.
(b) Symbols and subscripts should be written correctly.
(i) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ formulae (1) (then) balanced (1)
(ii) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ formulae (1) (then) balanced (1)

Accept $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(c) ideas of...
zinc is more reactive than iron \therefore when zinc-coating is damaged the iron is still protected
however
paint is inert \therefore when paint-coating is damaged damp air causes iron to rust

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 0652/05
PHYSICAL SCIENCE
Practical

Page 1	Mark Scheme	Sylla

1 (a) (i) Value for h within 0.4 mm of supervisor
(ii) Brief description of how volume was found Volume within $10 \mathrm{~cm}^{3}$ of supervisor sensible volume

Table:

Six pairs of values
Good spread to include a value equal to $150 \mathrm{~cm}^{3}$
Values in mm and decreasing with volume of water
(Penalise 1 mark when all intervals are exactly the same)
(b) Graph:

Axes correctly labelled
Sensible scales for plotted points
Plotting correct for 4 values
Best straight line drawn
4
Volume correctly read needs evidence of extrapolation
2
Within 10% of recorded volume
(c) Measure water level in cylinder

Put in the block and record new level
Volume of water displaced calculated is equal to the volume of block

2 (a) Gas/vapour burns
Limewater milky
Brown or charring/smoke/smell
3
(b) Goes out NOT 'nothing'

Limewater milky
2
(c) (i) Decolourised

1
(ii) Ul goes red
pH about 1-4
Acid present
3
(d) Blue/green
pH about 8-10
No mark for conclusion 2
(e) Effervescence OR gets cold 1
(f) Brief description 1

Diagram 2

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06
 PHYSICAL SCIENCE
 Alternative to Practical

Page 1 Mark Scheme

1 (a)
$2.6 \mathrm{~cm}, 5.8 \mathrm{~cm}$ correctly entered in Fig. 1.2 (no tolerance)
(b) displacement increases as load increases OWTTE
(c) repeat experiment (and average)/use a ruler marked in millimetres
(d) (i) thicker beam gives smaller displacement OWTTE
(ii) shorter beam gives smaller displacement OWTTE
(e) hang object on beam [1]
read displacement [1]
compare result with data from the experiment [1]
by plotting a graph of the data [1]

2

(a)	1.8 V [1], 150mA	
	2.4 V [1], 250 mA	(1 mark for both current readings)
	+/- 0.1V, +/- 10mA	

(b) 2 points correctly plotted [2] line drawn (can be straight or curved) [1]
(c) (i) the bulb becomes brighter as resistance decreases
(ii) the filament of the bulb melted OWTTE
(d) no, since it is not a straight line/V and I are not proportional OR
yes, graph is a straight line/(they are proportional)

(a)	(i)	$53.4 \mathrm{~g}, 60.0 \mathrm{~g}$	(must say 60.0)	[3]
	(ii)	6.6 g (ecf) [1]		
(b)		blue litmus (U.)	r turns red in th	[1]
(c)	(i)	56.8 g (no tole		[1]
	(ii)	3.2 g (ecf)	(both correct for	
(d)		evaporate to	some water [1]	[2]
		leave the solutio	cool [1]	
		OR		
		evaporate sol		
		over a boiling	ath [1]	

(e) (i) 62.9 g, (no tolerance) [1]
(ii) 9.5 g (ecf) [1]
(f) some copper nitrate left in the solution during crystallisation/water of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details

Total [10]
4 (a)
gas C: 8s
gas D: 3s
gas E: 12s. (no tolerance)
(b) gas C because it took the least time to fall OWTTE
(c) heavier (denser) gases fall, lighter (less dense) gases rise [1]
gases less dense (lighter) than air rise [1] gases more dense (heavier) than air fall [1]
(d) to keep the experiment fair/so that the results are accurate
gas:
(e) (i) gas A rose more quickly/it has the least density
(ii) test with a lighted spill/burn in air [1]
gas explodes (pop!) [1]

5
(a) box 1 colourless (clear) to cloudy/milky [1] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1]
box 2(b) carbon dioxide confirmed [1]
box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1]
(b) reaction vessel with delivery tube [1] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1]

6 (a) (i) use a pipette/dropper/burette
(ii) 103 (no tolerance) [1] 147 (ecf) [1]
(b) $28 \mathrm{~mm}, 14 \mathrm{~mm}(+/-1 \mathrm{~mm})$

Page 3	Mark Scheme	Syllabu

(c) (i) axes labelled and scale correctly shown [1] all points from Fig. 6.3 plotted correctly [1] straight line drawn extended to cut horizontal axis [1]
(ii) from candidates' own graph (approx 147)
(iii) it will sink OWTTE
(d) yes/comparison of (a) and (c)(ii) shows that mass in cup is numerically similar to (or greater than) its volume OR no/cup sank before its mass (g) exceeded the volume (cm^{3}) (depends on candidate's graph) (mark for explanation)

