UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICAL SCIENCE

Paper 6 Alternative to Practical
October/November 2004

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
Total	

This document consists of 14 printed pages and $\mathbf{2}$ blank pages.

1 A student was investigating the 'Law of Conservation of Mass', which states that neither created nor destroyed during a chemical reaction'.

He set up the apparatus as shown in Fig. 1.1.

Fig. 1.1
He weighed the flask and its contents. He then shook the conical flask, mixing the two chemicals. He noticed that a precipitate was formed, showing that a reaction had occurred. He then re-weighed the flask and its contents. He repeated the experiment twice more using different chemicals each time. Fig. 1.2 shows his results.

reaction	solution A	solution B	mass before reaction/g	mass after reaction/g	colour of precipitate
1	sulphuric acid	barium nitrate	84.5	84.5	
2	silver nitrate	sodium chloride	82.7	82.7	
3	iron(II) sulphate	sodium hydroxide	87.3	87.3	

Fig. 1.2
(a) Explain how the results prove the Law of Conservation of Mass.
\qquad
\qquad
\qquad
(b) What is meant by the term precipitate?
\qquad
\qquad
(c) In the last column of Fig. 1.2 write the colour of the precipitate formed in each reaction.
(d) Name the precipitate formed in each of the reactions. reaction 1 \qquad reaction 2 \qquad reaction 3
(e) Why would the mass after reaction be less than the mass before reaction if a gas was produced in the experiment?
\qquad
\qquad

2 An experiment was carried out to investigate the time taken for strips of magnesium to in varying concentrations of hydrochloric acid. These different solutions of hydrochloric were prepared by mixing suitable volumes of the acid and water as shown in Fig. 2.1.

- The magnesium was cut into 5 cm long pieces.
- A piece of magnesium was placed in a beaker containing $100 \mathrm{~cm}^{3}$ of hydrochloric acid of concentration $4.0 \mathrm{~mol} / \mathrm{dm}^{3}$, and a clock was started.
- The time the magnesium took to dissolve was noted in Fig. 2.1.
- The procedure was repeated using the other concentrations of acid.

expt. no.	volume of $4.0 \mathrm{~mol} / \mathrm{dm}^{3}$ yydrochloric acid $/ \mathrm{cm}^{3}$	volume of water $/ \mathrm{cm}^{3}$	concentration of mixture in $\mathrm{mol} / \mathrm{dm}^{3}$	time the magnesium took to dissolve s
1	100	0	4.0	12
2	75	25		48
3	50	50	2.0	
4	25	75		

Fig. 2.1
(a) (i) Calculate the concentrations of the mixtures of acid and water in experiments 2 and 4 , and write them in the table.
(ii) Fig. 2.2 shows the digital readout of the time taken for experiments 2 and 4 .

Read and record the times taken in Fig. 2.1.

experiment 2

experiment 4

Fig. 2.2

(c) Use the graph to predict the time that the magnesium will take to dissolve in acid of concentration $2.5 \mathrm{~mol} / \mathrm{dm}^{3}$.
.[1]
(d) A student read in a book that 0.1 g of magnesium produces $100 \mathrm{~cm}^{3}$ of hydroge it dissolves in acid. Draw a diagram of the apparatus you would use to test statement.

3 A student is given a convex lens, a small white screen and a ruler.
(a) At the other end of the laboratory there is a bright light. Explain how she can use lens, the screen and the bright light to find the focal length of the lens.
\qquad
\qquad
(b) The student finds out that the focal length of the lens is 15 cm .

She fixes the lens upright on the 50 cm mark of the ruler.
She marks the points \mathbf{F} and $\mathbf{2 F}$ on the ruler that are 15 cm and 30 cm away from the lens on the left.
She also marks the points $\mathbf{F}^{\mathbf{1}}$ and $\mathbf{2} \mathbf{F}^{\mathbf{1}}, 15 \mathrm{~cm}$ and 30 cm away from the lens on the right. Write in the spaces on Fig. 3.1 the actual numbers on the ruler for the points $\mathbf{F}, \mathbf{2 F}, \mathbf{F}^{\mathbf{1}}$ and $\mathbf{2 F}{ }^{\mathbf{1}}$.

Fig. 3.1
(c) In experiment 1, the student puts a lighted candle more than $\mathbf{2 F c m}$ away from the lens. Then she moves the screen on the other side of the lens so that a sharp image of the candle flame is formed. See Fig. 3.2.

Fig. 3.2

She does two more experiments with the candle in different positions. Each time, the student draws a picture of the image of the candle flame. Use the pictures in Fig. 3.4 to help you to fill in the last two columns of Fig. 3.3.

expt. no.	candle position	image position	what the image is like Is it larger, smaller or same size as the candle?	Is it upright or inverted?
	beyond $\mathbf{2 F}$	between $\mathbf{F}^{\mathbf{1}}$ and $\mathbf{2 F} \mathbf{F}^{\mathbf{1}}$		
2	at 2F	at 2F $\mathbf{F}^{\mathbf{1}}$		
3	between \mathbf{F} and $\mathbf{2 F}$	beyond $\mathbf{2 F ^ { \mathbf { 1 } }}$		

Fig. 3.3

the image experiment 2

the image experiment 3

Fig. 3.4
(d) The teacher gives the student an unfinished diagram to show the rays of light leave the candle, pass through the lens and form the image.

Fig. 3.5
(i) On Fig. 3.5, draw a horizontal line from point \mathbf{C}, the candle flame, to the lens, then continue it to pass through the point \mathbf{F}^{1}.
(ii) Draw a straight line from point \mathbf{C} through the centre of the lens, meeting line (i) on the opposite side of the lens. Label point \mathbf{X}, where lines (i) and (ii) meet.
(iii) Draw a vertical line from \mathbf{X} to the line $\mathbf{A B}$, cutting $\mathbf{A B}$ at \mathbf{Y}.
(iv) Measure the distance $\mathbf{X Y}$ in millimetres and record the distance in the space below.

XY \qquad mm
(e) Which of the experiments in Fig. 3.3 is illustrated by your diagram in (d) experiment number \qquad

4 A student did an experiment to show that when hot and cold water are mixed, the by the hot water is equal to the heat gained by the cold water.

Using a measuring cylinder she put 100 g of water into a glass beaker and 50 g into another. She placed the beaker containing the 100 g of water on a cork mat, well away from any source of heat and measured the temperature of the water.

She heated the 50 g of water in the other glass beaker until the temperature was just above $70^{\circ} \mathrm{C}$. She allowed this water to cool, with stirring, until the temperature was exactly $70^{\circ} \mathrm{C}$, she then poured it into the beaker of cold water.

She stirred the mixture and recorded the highest temperature reached.
The student repeated the experiment, using 100 g of hot water at $70^{\circ} \mathrm{C}$ and 50 g of cold water but this time she poured the cold water into the hot.
(a) The thermometer scales, Fig. 4.1, show the temperature of the cold water in both experiments and the final temperature in each case. Record these temperatures in Fig. 4.2.

Fig. 4.1

	temperature of hot water	$70^{\circ} \mathrm{C}$
	temperature of cold water	${ }^{\circ} \mathrm{C}$
experiment 1	final temperature - hot water added to cold water	${ }^{\circ} \mathrm{C}$
experiment 2	final temperature - cold water added to hot water	${ }^{\circ} \mathrm{C}$

Fig. 4.2
(b) Calculate the temperature rise of the cold water in experiment 1 Calculate the temperature fall of the hot water in experiment 2 \qquad ${ }^{\circ} \mathrm{C}$
(c) Calculate the heat gained by the cold water in experiment 1, using the formula below. heat gained $=4.2 \times$ mass of water in $\mathrm{g} \times$ rise in temperature $=$ \qquad joules
(d) Calculate the heat lost by the hot water in experiment 2, using the formula below heat lost $=4.2 \times$ mass of water in $\mathrm{g} \times$ fall in temperature $=$ \qquad joules
(e) Explain why the rise in temperature of the cold water in experiment 1 is approximately equal to the fall in temperature of the hot water in experiment 2.
\qquad
\qquad
\qquad
(f) Explain how the student could have improved the accuracy of her results.
\qquad
\qquad

5 The apparatus shown in Fig. 5.1 was used to investigate how two black powders, caro copper oxide, reacted with three different gases.

Fig. 5.1
The gases carbon monoxide, hydrogen and oxygen were passed in turn over the heated powders. The products of the reaction passed through a cooled U-tube and then through limewater. Some of the results are shown in Fig. 5.2.

Results for carbon

expt. no.	gas used	what was seen in heated tube	did liquid collect in U-tube? (yes/no)	did limewater turn cloudy? (yes/no)
1	carbon monoxide			
2	hydrogen	no change	no	no
3	oxygen	red glow, powder disappeared	no	yes

Results for copper oxide

expt. no.	gas used	what was seen in heated tube	did liquid collect in U-tube? (yes/no)	did limewater turn cloudy? (yes/no)
4	carbon monoxide	powder turned red/brown	no	yes
5	hydrogen			
6	oxygen	no change	no	no

Fia. 5.2
(a) Complete Fig. 5.2 to show the results for experiments 1 and 5 .
(b) How could you show that any liquid that collects in the U-tube is water?
\qquad
\qquad
(c) Choose any one of the reactions in Fig. 5.2 and use it to explain the meaning of the terms oxidation and reduction.
\qquad
\qquad
\qquad
\qquad

6 The teacher sets up the apparatus shown in Fig. 6.1 to demonstrate energy changes. A large mass is attached to a cord wound around a spindle. As the mass falls, the spindle turns. The motion is transmitted to a generator. The current from the generator passes through the circuit containing a voltmeter, an ammeter and a light bulb. The mass falls a distance of 1 metre in 10 seconds and hits the workbench.

Fig. 6.1
(a) Energy conversions occur while the mass falls.

In what form is the energy
(i) in the mass, \qquad
(ii) in the pulley, \qquad
(iii) in the connecting wire? \qquad
(b) Fig. 6.2 shows the ammeter and voltmeter readings when the mass is falling.

v

A

Fig. 6.2
Read and record the current and voltage in the spaces below.
current $=$ A
voltage $=$ V
(c) The 5 kg mass falls through a distance of 1 metre.

Calculate the work done by the falling mass. Take \mathbf{g}, the acceleration due to gravity, as $10 \mathrm{~N} / \mathrm{kg}$. Use the formula below.
work done in joules $=$ mass in $\mathrm{kg} \times$ distance it falls in metres $\times \mathbf{g}$
(d) Find the work done to light the bulb using the formula below.

$$
\text { work done in joules }=\text { p.d. in volts } \times \text { current in } \mathrm{amps} \times \text { time in seconds }
$$

(e) Suggest two reasons why the answers to (c) and (d) are not equal.

1. \qquad
\qquad
2. \qquad
\qquad
(f) Suggest one observation that will be different if the mass moves more quickly.

BLANK PAGE

[^0]
[^0]: Every reasonable effort has been made to trace all copyright holders where the publishers (i.e UCLES) are aware that third-party material has been reproduced The publishers would be pleased to hear from anyone whose rights we have unwittingly infringed.

