Www.trapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0652 PHYSICAL SCIENCE

0652/02 Paper 2 maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1			Mark Scheme	Syllabus	COL	1
			IGCSE – November 2005	0652	13	6.
1	(a)	(i)	Convection		Can	'age
		(ii)	Air expands becomes less dense		1 1	3
	(b)	Cond	lensation		1	1
	(c)	(i)	Acceleration constant		1 1	
		(ii)	Constant speed/velocity		1	3
					Tota	d 7
2	(a)	diffus	sion		1	1
	(b)	With	cules of the (coloured) gas collide molecules of air/nitrogen,/oxygen nswer based on densities can score 1 mark)		1	2
				Total 3		
3	(a)	mild : Stain	· · · · · · · · · · · · · · · · · · ·		1 1	2
	(b)		steel rusts (in damp air) less does not rust		1 1	2
					Tota	al 4
4	(a)	thern	nical (potential) nal rical (potential)		1 1 1	3
	(b)	(i)	geothermal		1	
		(ii)	non polluting/renewable etc.		1	2
	(c)		ion of gravitational or strain potential energy without spurious energies such as kinetic energy	у	1 +1	2
					Tota	d 7
5	(a)	(i)	chromatography		1	
		(ii)	to make colourless components visible		1	2

Page 2			Mark Scheme	Syllabus		dy	1
			IGCSE – November 2005	0652		1	50.
	(b)	Bitum boilin <i>OR</i>	onal distillation (both words) nen is the fraction with the highest ng point ue left after all others have boiled off		1	2	
						Tota	I 4
6	(a)	Ultra	violet		1	1	
	(b)	Rema	ains the same		1	1	
	(c)	X-ray	•		1	1	
	(d)	20 00	00 – 30 000 (Hz)		1	1	
						Tota	I 4
7	(a)	(i)	ethane			1	
		(ii)	correct structure shown			1	2
	(b)	(i)	ethanol			1	
		(ii)	correct structure shown			1	2
	(c)	(i)	poly(e)thene			1	
		(ii)	correct structure shown			1	2
						Tota	I 6

Syllabus

		IGCSE – November 2005	0652	1	bridge
8	(a)	Either iron filings method OR plotting compass			
		place magnet <u>under</u> paper place magnet <u>o</u> sprinkle iron filings place compass finely mark tip and more tap paper repeat and join other good detail place magnet of place compass mark tip and more of place magnet of place compass mark tip and more of place magnet of place compass mark tip and more of place magnet of place compass mark tip and more of place magnet of place compass mark tip and more of place magnet of place magnet of place compass mark tip and more of place magnet of place m	near one pole ove tail to mark		
		Any four points 1+1+1-		4	
	(b)	Good shape and minimum of three good lines from e	1		
		Minimum of five good lines from each end <u>none</u> touc Correct field direction			
				Tota	al 7
9	(a)	17 18 2,8,7 & 2,8,7 (<u>both</u> correct)		1 1 1	3
	(b)	one shared pair of electrons Correct outer shells of electrons		1 1	2
	(c)	(i) transfer of one electron from Na to Cl to form Na ⁺ and Cl ⁻ (accept labelled diagrams)		1 1	
		(ii) opposite charged ions attract		1	3
	(d)	liquid contains ions that are free to move solids contains ions that are held in a lattice		1 1	2
	(e)	TEST: add (dilute nitric acid then) aqueous silver nit	rate	1	
		RESULT: white precipitate (both words)		1	2
				Tota	al 12

Mark Scheme

Page 3

Page 4		Mark Scheme Syl		Syllabus	CO.	
			IGCSE – November 2005	0652	13	5.
10	(a)	(i)	Atom has 8 electrons in outer shell (accept full outer shell)		Carry	de
		(ii)	Any two of:			•
			He nucleus			
			2 protons and 2 neutrons fast moving/coming from nucleus		1 +1	3
	(b)		ine correct (216 and 4)		1	_
		Botto	om line correct (84 and 2)		1	2
	(c)	Evide	ence of halving in equal time periods		1	
			rly 3 events		1	
		1 (mi	nute)		1	3
					Tota	I 8
11	CADE		ONOXIDE:			
	CARE	OIV IVI	incomplete combustion (of fuels)		1	
			that contain carbon (compounds)		1	
	NITR	OGEN	OXIDES:			
	74777	OGLIV	Combustion processes in car engines		1	
			emmitted through exhausts		1	4
					Tota	l 4
12	(a)	(i)	heat or roast (in a kiln)		1	
		(ii)	CaO		1	
			CO_2		1	
			(either order)			
		(iii)	endothermic or energy is required		1	
		(iv)	TEST: bubble gas through lime water		1	
			RESULT: goes cloudy or milky		1	6
	(b)	neutr	ralisation		1	1
					Tota	I 7
13	(a)		ion of water/ damp		1	
			er is a conductor		1	•
		Clea	r that a large current could pass through consum	ner	1	3
	(b)	(i)	R = V/I or 240/0.25		1	
			= 960		1	
			ohm		1	
		(ii)	0.5		1	4
					Tota	I 7