WANN, PAPAC CAMBridge, COM

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/03

Paper 3

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Total					

This document consists of **14** printed pages and **2** blank pages.

1 Fig. 1.1 shows the arrangement of electrons in a lithium atom.

Fig. 1.1

(a) Lithium and potassium are both Group I metals.

Complete the diagram in Fig. 1.2 to show the arrangement of electrons in a potassium atom.

(e) = electron

[2]

- **(b)** When a small piece of lithium is dropped into a trough half filled with water a reaction takes place. Bubbles of the gas hydrogen are given off slowly and lithium hydroxide is formed.
 - (i) Write a balanced equation for this reaction.

· ·	$\Gamma \cap I$	
	ロフロ	
	1-1	

(ii) Describe how you could prove that the gas given off is hydrogen.

result _____

[2]]

For Examiner's Use

(c)	Describe two differences that you would see between the reaction of lithium with wand that of potassium with water. 1.	
		[2]
		nas
(a)	Calculate the angle of refraction for this ray of light. Write down the equation that you use and show all your working.	
		[3]
(b)	Draw a fully labelled diagram to show the refraction of the light as it enters and leave the glass block.	/es
	A ra a re (a)	2. A ray of light enters a rectangular glass block at an angle of incidence of 66°. The glass has refractive index of 1.45. (a) Calculate the angle of refraction for this ray of light. Write down the equation that you use and show all your working. (b) Draw a fully labelled diagram to show the refraction of the light as it enters and leave

3 Copper(II) oxide reacts with dilute sulphuric acid.

$$CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$$

In the preparation of copper(II) sulphate, copper(II) oxide is added to 20 cm3 of sulphuric acid of 1.0 mol/dm³ concentration until no more reacts.

(a) (i) Calculate the number of moles in the 20 cm³ of sulphuric acid.

(ii) How many moles of copper(II) sulphate are produced in the reaction?

(iii) Calculate the relative formula mass, M_r , of copper(II) sulphate, CuSO₄.

Show your working.

$$M_{\rm r}$$
 = [2]

(iv) Calculate the mass of copper(II) sulphate, CuSO₄, formed.

Show your working.

(b) Describe how crystals of copper(II) sulphate can be prepared from the mixture of excess copper(II) oxide and copper(II) sulphate solution obtained when the reaction stops.

เอา	
ISI	

A player throws a ball, of mass 0.15 kg, horizontally.

The ball has a constant acceleration for a time of 0.10s and then moves at a constant so of 20.0 m/s for 0.80 s before being caught and brought to rest in a further time of 0.30 s. As the ball is caught it decelerates non-uniformly.

(a) On Fig. 4.1 draw a graph showing the speed of the ball from when it was thrown until the time it came to rest.

Fig. 4.1 [4]

(b) Calculate the maximum kinetic energy of the ball. Show all your working.

maximum kinetic energy = [3]

(c) Calculate the acceleration of the ball during the first 0.10 s. Write down the equation that you use and show all your working.

acceleration = _____[3]

5 Fig. 5.1 shows the gas hydrogen being burned in air.

Fig. 5.1

(a)		en hydrogen burns the only product is water. te a balanced equation for the burning of hydrogen.	
			[2]
(b)	Sor	en petrol is burned in a car engine a number of products are formed. ne of these products cause pollution. ese include carbon monoxide and oxides of nitrogen.	
	(i)	How are the oxides of nitrogen removed from the exhaust gases of modern cars.	
			[1]
	(ii)	Why may the presence of carbon monoxide in car exhaust systems cause a heaproblem?	lth
			[1]
(c)		as been suggested that hydrogen may replace petrol as a fuel for cars. ggest one advantage and one disadvantage of using hydrogen instead of petrol.	
	adv	rantage	
	disa	advantage	
		[[2]

6 (a) Explain what is meant by an object being in equilibrium.

(b) Fig. 6.1 shows a method of measuring the mass of a uniform loaded ruler. The ruler is pivoted at the 18 cm mark.

Fig. 6.1

(i)	The ruler mass?	is	uniform.	What	does	this	tell	you	about	the	position	of its	centre	e of
														[1]

(ii) The total length of the ruler is 80 cm. The 50 g mass is hung from the 8 cm mark on the ruler. Calculate the mass of the ruler. Show all your working.

mass of ruler = ____ g [4]

Powdered calcium carbonate is added to excess hydrochloric acid of three 7 concentrations, A, B and C.

$$CaCO_3$$
 + $2HCl$ \longrightarrow $CaCl_2$ + CO_2 + H_2O

In each experiment the same mass of powder is used and the acid is at the same temperature.

The volume of carbon dioxide gas given off is measured at time intervals.

The results of these experiments are shown in Fig. 7.1.

Fig. 7.1

(i)	Which of the three solutions of hydrochloric acid, ${\bf A}, {\bf B}$ or ${\bf C},$ is the nucleon concentrated?	nost
		[1]
(ii)	Explain how Fig. 7.1 shows your answer to (i) is correct.	
		[2]
(iii)	Why do each of the three experiments give the same total volume of gas?	
		[1]
	<i></i>	concentrated? (ii) Explain how Fig. 7.1 shows your answer to (i) is correct.

(b) A fourth experiment is carried out using hydrochloric acid solution A and the same mass of powdered calcium carbonate.

This time the experiment is carried out at a higher temperature.

Sketch on Fig. 7.1 the result you would expect for this fourth experiment.

[2]

For Examiner's

(c) (i) Calculate the number of moles in the 100 cm³ of carbon dioxide gas pro (Assume the volume of carbon dioxide is measured at r.t.p. The volume of mole of any gas is 24 dm³ at r.t.p.).

moles of carbon dioxide = [1]

(ii) Calculate the number of moles of calcium carbonate used to produce 100 cm³ of carbon dioxide gas.

moles of calcium carbonate = [1]

(iii) Calculate the mass of calcium carbonate used to produce $100~{\rm cm}^3$ of carbon dioxide gas.

Show your working.

(The relative formula mass, M_r , of calcium carbonate = 100.)

mass of calcium carbonate = g [2]

[3]

For Examiner's

8 (a) (i) Name the process by which the Sun produces energy.

(ii) Explain what happens in this process.

 •••••	 	

(b) Calculate the energy released in the Sun when its mass decreases by 1200 kg as a result of this process. Write down the equation you use and show all your working. The speed of light = $3.0 \times 10^8 \,\text{m/s}$.

9 Fig. 9.1 shows the graphical formulae of five organic compounds.

Fig. 9.1

For Examiner's Use

(a)	(i)	Which two compounds are alkanes?	CS
	(ii)	Which compound dissolves in water to give an acidic solution?	
			[1]
(b)	(i)	Describe a test to distinguish between compounds C and D .	
		test	
		result	
			[2]
	(ii)	In industry compound D is made from compound C . Name the type of reaction that is used.	
			[1]
(c)		mpound D can be used to make a polymer. we the structure for this polymer.	

www.xtrapapers.com
For Examiner's Use

10 Fig. 10.1 shows a circuit with a high resistance voltmeter being used to measure the of a cell.

Fig. 10.1

(a)	Explain why the voltmeter must have a high resistance if it is to measure an accur value of the e.m.f.	ate
		[2]

(b) Fig. 10.2 shows a cell with an internal resistance of 5 Ω . A voltmeter which has a resistance of 995 Ω is connected across the cell. The e.m.f. of the cell is 1.50 V.

Fig. 10.2

(i) Calculate the current in the circuit.

current = ____ A [3]

(ii)	13 Calculate the potential difference across the voltmeter.	rapapers.com For Examiner's Use
	potential difference =V	[2]
iii)	Explain why this voltmeter gives a good approximation to the e.m.f. of the cell.	
		[2]

14

BLANK PAGE

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

16

DATA SHEET
The Periodic Table of the Elements

-			1 1					ğ	Group			=		;	,		
=						- 1						=	≥	>	5	=	0
							- エ										₹
			·		<u> </u>	•	Hydrogen										Helium 2
o								1				11	12	14	16	19	20
Be												Ω	ပ	Z	0	ш	Se
Beryllium 4												Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
24												27	28	34	32	35.5	40
Mg												Αl		_	တ	CI	Αľ
Magnesium 12												Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
40 45 48 51 52 55	48 51 52	51 52	52		55		56	59	59	64	99	20	73	75	62	80	84
Ca Sc Ti V Cr Mn	رَّد ا	ပ် >	ပ်		M		Fe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	Ā	ž
Calcium Scandium Titanium Vanadium Chromium Manganese 20 21 22 23 24 25 25	candium Titanium Vanadium Chromium 22 24	itanium Vanadium Chromium 23 24 2	nadium Chromium 24	romium	Manganese 25		Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34	Bromine 35	Krypton 36
89 91 93	93	66		96			101	103	106	108	112	115	119		128	127	131
Y Zr Nb	Zr Nb Mo	Nb Mo	Mo		ပ				Pq	Ag	ပ္ပ	In	Sn	Sp	<u>e</u>	_	Xe
Strontium Ytrium Zirconium Niobium Molybdenum Technetium 38 39 40 41 42 42 43 43	Yttrium Zirconium Niobium Molybdenum 40 41 42 42 42 42	conium Niobium Molybdenum	liobium Molybdenum 42	,	Technetium 43		Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
137 139 178 181 184 186	178 181 184	181 184	184		186		190	192	195	197	201	204	207	209			
Ba La Hf Ta W Re	Hf Ta W	Ta W	>		Re		Os	ľ	ᆂ	Αu	Hg	11	Ъ	:Ē	Po	¥	Ru
Barlum Lanthanum Hafnlum Tantalum Tungsten Rhenium 56 57 * 72 73 73 74 75 75	### T2 Tantalum Tungsten 75 74 75 75 74 75 75 75	Hafnium Tantalum Tungsten 72 73 74 75	ntalum Tungsten 75	Ingsten 75	Rhenium 75		Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
226 227	722					1							-		-	-	-
Ra Ac	Ac																
Radium Actinium 88 89	Actinium 89																
141	140 141	141	141		144			150	152	157	159	162	165	167	169	173	175
Cerium Praseodymium	Cerium Praseodymium	Pr	Pr		Neodymium		Pm Promethium	۶	Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	H olmium	Erbium	T	Yb Ytterbium	Lu Lutetium
20		59	59		90		61		63	64	65	99	67	89	69	70	71

	WWW.	xtrapapers.com
		a la
175 Lu Lutetium 71	Lr Lawrenciu	acan,
173 Yb Ytterbium 70	Nobelium 102	ARABAC ARABATITATE CORP.
169 Tm Thulium 69	Md Mendelevium 101	(an)
167 Er Erbium 68	Fm Fermium 100	1
165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
162 Dy Dysprosium 66	Cf Californium 98	pressure
159 Tb Terbium 65	Bk Berkelium 97	iture and
Gd Gadolinium 64	Cm Curium 96	r tempera
152 Eu Europium 63	Am Americium 95	יז at room
Sm Samarium 62	Pu Plutonium 94	s is 24 dn
Pm Promethium 61	Neptunium 93	of any ga
144 Neodymium 60	238 U Uranium 92	ne mole i
Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
140 Ce Cerium 58	232 Th Thorium 90	The vc

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

ω ×

Key