Centre Number

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
 International General Certificate of Secondary Education

PHYSICAL SCIENCE

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.
A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 14 printed pages and 2 blank pages.

1 Fig. 1.1 shows the arrangement of electrons in a lithium atom.

(e) = electron

Fig. 1.1
(a) Lithium and potassium are both Group I metals.

Complete the diagram in Fig. 1.2 to show the arrangement of electrons in a potassium atom.

Fig. 1.2
(b) When a small piece of lithium is dropped into a trough half filled with water a reaction takes place. Bubbles of the gas hydrogen are given off slowly and lithium hydroxide is formed.
(i) Write a balanced equation for this reaction.
\qquad
(ii) Describe how you could prove that the gas given off is hydrogen.
test \qquad
\qquad
result \qquad
\qquad
(c) A small piece of potassium is dropped into a trough half filled with water. Describe two differences that you would see between the reaction of lithium with and that of potassium with water.

1. \qquad
\qquad
2. \qquad

2 A ray of light enters a rectangular glass block at an angle of incidence of 66°. The glass has a refractive index of 1.45 .
(a) Calculate the angle of refraction for this ray of light.

Write down the equation that you use and show all your working.
(b) Draw a fully labelled diagram to show the refraction of the light as it enters and leaves the glass block.

3 Copper(II) oxide reacts with dilute sulphuric acid.

$$
\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

In the preparation of copper(II) sulphate, copper(II) oxide is added to $20 \mathrm{~cm}^{3}$ of sulphuric acid of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ concentration until no more reacts.
(a) (i) Calculate the number of moles in the $20 \mathrm{~cm}^{3}$ of sulphuric acid.
moles of sulphuric acid =
(ii) How many moles of copper(II) sulphate are produced in the reaction?

> moles of copper(II) sulphate =
(iii) Calculate the relative formula mass, M_{r}, of copper(II) sulphate, CuSO_{4}. Show your working.

$$
M_{r}=
$$

(iv) Calculate the mass of copper(II) sulphate, CuSO_{4}, formed.

Show your working.
mass =
\qquad 9
(b) Describe how crystals of copper(II) sulphate can be prepared from the mixture of excess copper(II) oxide and copper(II) sulphate solution obtained when the reaction stops.
\qquad
\qquad
\qquad
\qquad

4 A player throws a ball, of mass 0.15 kg , horizontally.
The ball has a constant acceleration for a time of 0.10 s and then moves at a constant s of $20.0 \mathrm{~m} / \mathrm{s}$ for 0.80 s before being caught and brought to rest in a further time of 0.30 s . As the ball is caught it decelerates non-uniformly.
(a) On Fig. 4.1 draw a graph showing the speed of the ball from when it was thrown until the time it came to rest.

Fig. 4.1
[4]
(b) Calculate the maximum kinetic energy of the ball. Show all your working.
maximum kinetic energy $=$
(c) Calculate the acceleration of the ball during the first 0.10 s . Write down the equation that you use and show all your working.
acceleration =

5 Fig. 5.1 shows the gas hydrogen being burned in air.

Fig. 5.1
(a) When hydrogen burns the only product is water. Write a balanced equation for the burning of hydrogen.
\qquad
(b) When petrol is burned in a car engine a number of products are formed.

Some of these products cause pollution.
These include carbon monoxide and oxides of nitrogen.
(i) How are the oxides of nitrogen removed from the exhaust gases of modern cars.
(ii) Why may the presence of carbon monoxide in car exhaust systems cause a health problem?
\qquad
(c) It has been suggested that hydrogen may replace petrol as a fuel for cars.

Suggest one advantage and one disadvantage of using hydrogen instead of petrol.
advantage \qquad
\qquad
disadvantage \qquad

6 (a) Explain what is meant by an object being in equilibrium.
\qquad
\qquad
\qquad
(b) Fig. 6.1 shows a method of measuring the mass of a uniform loaded ruler. The ruler is pivoted at the 18 cm mark.

Fig. 6.1
(i) The ruler is uniform. What does this tell you about the position of its centre of mass?
\qquad
\qquad
(ii) The total length of the ruler is 80 cm . The 50 g mass is hung from the 8 cm mark on the ruler. Calculate the mass of the ruler. Show all your working.

7 Powdered calcium carbonate is added to excess hydrochloric acid of three concentrations, A, B and C.

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

In each experiment the same mass of powder is used and the acid is at the same temperature.
The volume of carbon dioxide gas given off is measured at time intervals.
The results of these experiments are shown in Fig. 7.1.

Fig. 7.1
(a) (i) Which of the three solutions of hydrochloric acid, A, B or C, is the most concentrated?
\qquad
(ii) Explain how Fig. 7.1 shows your answer to (i) is correct.
\qquad
\qquad
\qquad
(iii) Why do each of the three experiments give the same total volume of gas?
\qquad
\qquad
(b) A fourth experiment is carried out using hydrochloric acid solution \mathbf{A} and the same mass of powdered calcium carbonate.
This time the experiment is carried out at a higher temperature.
Sketch on Fig. 7.1 the result you would expect for this fourth experiment.
(c) (i) Calculate the number of moles in the $100 \mathrm{~cm}^{3}$ of carbon dioxide gas pr (Assume the volume of carbon dioxide is measured at r.t.p. The volume mole of any gas is $24 \mathrm{dm}^{3}$ at r.t.p.).
moles of carbon dioxide $=$
(ii) Calculate the number of moles of calcium carbonate used to produce $100 \mathrm{~cm}^{3}$ of carbon dioxide gas.
moles of calcium carbonate $=$
(iii) Calculate the mass of calcium carbonate used to produce $100 \mathrm{~cm}^{3}$ of carbon dioxide gas.
Show your working.
(The relative formula mass, M_{r}, of calcium carbonate $=100$.)

8 (a) (i) Name the process by which the Sun produces energy.
\qquad
(ii) Explain what happens in this process.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the energy released in the Sun when its mass decreases by 1200 kg as a result of this process. Write down the equation you use and show all your working. The speed of light $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
energy released $=$ \qquad J [4]

9 Fig. 9.1 shows the graphical formulae of five organic compounds.

A
B
C

D

E

Fig. 9.1
(a) (i) Which two compounds are alkanes?
\qquad
(ii) Which compound dissolves in water to give an acidic solution?
\qquad
(b) (i) Describe a test to distinguish between compounds C and D. test
\qquad
result \qquad
\qquad
(ii) In industry compound \mathbf{D} is made from compound \mathbf{C}. Name the type of reaction that is used.
\qquad
(c) Compound \mathbf{D} can be used to make a polymer.

Draw the structure for this polymer.

10 Fig. 10.1 shows a circuit with a high resistance voltmeter being used to measure th of a cell.

Fig. 10.1
(a) Explain why the voltmeter must have a high resistance if it is to measure an accurate value of the e.m.f.
\qquad
\qquad
\qquad
(b) Fig. 10.2 shows a cell with an internal resistance of 5Ω. A voltmeter which has a resistance of 995Ω is connected across the cell. The e.m.f. of the cell is 1.50 V .

Fig. 10.2
(i) Calculate the current in the circuit.
\qquad
(ii) Calculate the potential difference across the voltmeter.
potential difference $=$ \qquad V
(iii) Explain why this voltmeter gives a good approximation to the e.m.f. of the cell.
\qquad
\qquad
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department
DATA SHEET
The Periodic Table of the

