
This document consists of 16 printed pages.

Fig. 1.1	2 1 shows a 0.20kg mass hanging on a spring.		Mann. Babo	For iner's
	Fig. 1.1			
(a) (i)	Calculate the weight of the mass. ($g = 10 \text{ N/kg}$) Show your working.			
	wei	eight =		
(ii)	Write down the force acting on the mass due to t	the spring].	
	ford	ce =		[3]
(b)	The mass is pulled down 1.5 cm and released.			
	Draw an arrow on the diagram and label it <i>F</i> , to force on the mass immediately after it is released			ant [1]

Www.papacambridge.com Metal greenhouse frames, as shown in Fig. 2.1, are usually made of steel or aluminity 2

(a) A disadvantage of using steel for a greenhouse frame is that it rusts when in contact with water and air.

This problem can be overcome by galvanising the steel.

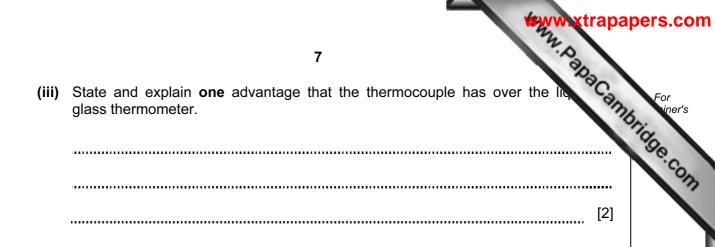
(i) Explain what is meant by the term *galvanising*.

..... [1]

(ii) Galvanising stops steel from rusting, even if the protective coating is scratched to expose the steel underneath.

Explain why.

[3]


(iii) Describe another method that could be used to prevent the steel frame rusting.

..... [1]

4

		www.xtra	apapers.com
		5	For iner's
	(iv)	Does this method protect the steel frame as well as galvanising?	For
		Explain your answer.	nbric iner's
			Sec.
			1]
(b)	An	aluminium greenhouse frame does not corrode as quickly as steel.	
	Exp	lain why.	
			[2]
(c)	Alu	minium is also used to make aircraft bodies.	
	For	this use aluminium is alloyed with other metals.	
	(i)	What effect does alloying have on the properties of aluminium that make it mo useful for aircraft construction?	re
		,	
			[1]
	(ii)	Explain why alloying has this effect.	
			[2]

Www.papaCambridge.com 6 3 Fig. 3.1 shows a liquid-in-glass thermometer. 100 10 20 30 40 50 60 70 80 90 110°C Fig. 3.1 (a) Explain what happens to the liquid when the thermometer is placed in a beaker of hot water. [2] (b) Fig. 3.2 shows another type of thermometer, known as a thermocouple. wire A junction 1 junction 2 wire C wire **B** Fig. 3.2 (i) Name suitable materials for wire A wires B and C [2] (ii) Junction 1 is placed in melting ice. Junction 2 is placed in boiling water. The voltmeter reads 7.2 mV. Junction 2 is then placed in a beaker of water. The voltmeter reading falls to 4.8 mV. Calculate the temperature of the beaker of water. Show your working. temperature [2]

se elen (a) Complete Table 4.1 to show the arrangement of electrons in atoms of these elen 4 The first one has been done for you.

Table	4.1
-------	-----

element	electron arrangement			
Mg	2	8	2	
к				
Ar				
N				

- [3]
- (b) Describe the relationship between the electron arrangement of the atoms of an element and the position of that element in the Periodic Table.

 [2]

(c) Elements in Group 7 are called halogens. Table 4.2 gives some information about the physical properties of three halogens.

Table 4.2

halogen	proton number	melting point/°C	boiling point/°C	colour
chlorine	17	-101	-35	pale green
bromine	35	-7	59	deep red
iodine	53	114	184	dark grey

(i) Calcium forms ions with the formula Ca^{2+} . Iodine forms ions with the formula I⁻. What is the formula of calcium iodide?

[1]

(ii) The element below iodine in this Group is astatine.

Suggest the colour of astatine.

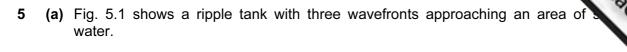
For iner's [1]

(d) Table 4.3 gives information about four elements in Group 0 of the Periodic Table, called the noble gases.

alamant	proton	melting	boiling	density of gas
element	number	point/°C	point/°C	in kg/m ³
helium	2	-272	-269	0.17
neon	10	-248	-246	0.84
argon	18	-189	-186	1.67
krypton	36	-157	-152	3.50

Table 4.3

(i) Describe the trend in boiling point for elements in Group 0.


..... [2]

(ii) The density of air is 1.20 kg/m^3 .

Helium is used in airships and weather balloons. The other noble gases are not.

Use data from the table to suggest why.

..... [3]

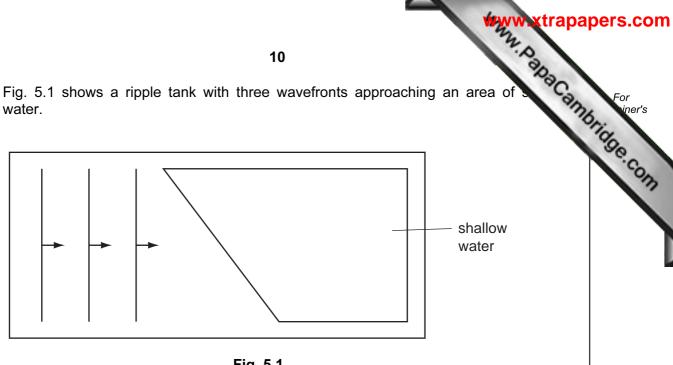
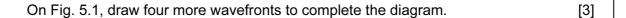



Fig. 5.1

(b) Fig. 5.2 shows a similar ripple tank, with three wavefronts approaching a gap in a barrier.

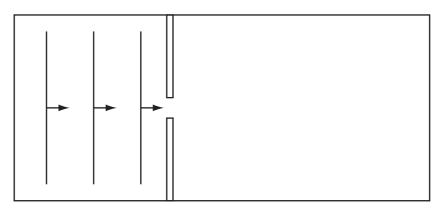
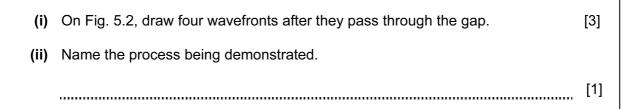
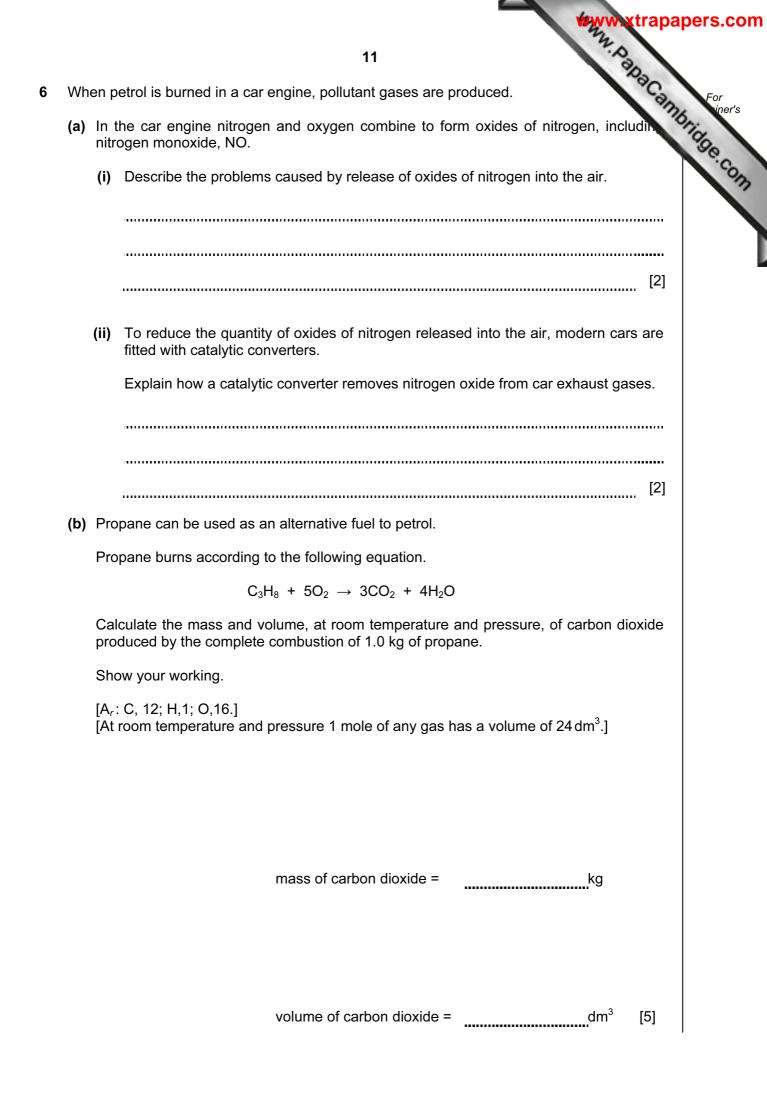




Fig. 5.2

(c) Carbon dioxide is a covalent compound.

For iner's cule of carbon Draw a diagram to show the arrangement of outer electrons in a molecule of carbon dioxide.

[3]

				pers.com
		13 ene is reacted with steam to make ethanol.		
7	Eth	ene is reacted with steam to make ethanol.	Can	For
	(a)	Describe how ethene is obtained.	11	hidde
				Com
			[2]	
	(b)	Write a balanced equation for the reaction between ethene and steam.		
			[2]	
	(c)	Complete this sentence to describe the conditions used for this reaction.		
		Ethene and steam are mixed at high pressure in the presence of		
			[1]	

14 .nuclear power station supplies 200 000 kW to the National Grid at 55 000 V. a) Calculate the current from the power station. Show your working. current =
current =
current =
 (i) Explain why the energy is transmitted at a very high voltage. (i) Explain why the energy is transmitted at a very high voltage. (ii) Explain why the energy is transmitted at a very high voltage. (iii) Name the device used to step down the voltage. (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working.
 for domestic use. (i) Explain why the energy is transmitted at a very high voltage. (ii) Name the device used to step down the voltage. (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns [5] c) A transformer is described as 100% efficient.
 (ii) Name the device used to step down the voltage. (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
 (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
 (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
 (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
 (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
 (iii) Calculate the turns ratio required to step the voltage down from 55 000 V to 250 V. Show your working. primary turns : secondary turns
Show your working. primary turns : secondary turns i [5] c) A transformer is described as 100% efficient.
:) A transformer is described as 100% efficient.
:) A transformer is described as 100% efficient.
c) A transformer is described as 100% efficient.
[1]

	May Waxtr	apapo
	15	1
The iod	line isotope, $^{131}_{53}$ I, decays by emitting a β -particle.	Camb
(a) Ex	15 Une isotope, ${}^{131}_{53}$ I, decays by emitting a β -particle. plain what is meant by a β -particle.	
		[2]
(b) (i)	Complete the equation which describes the decay.	
	$^{131}_{53}I = \sum_{m} X + \sum_{m} \beta$	
(ii)	Use the Periodic Table, on page 16, to identify the element X and comment on reactivity.	its
		[4]
(c) Th	is isotope has a half-life of 8.1 days and is used in medical diagnosis and treatmen	.+
Su	ggest why the isotope is suited for this purpose.	
		[2]
		-

·						Municipal Contractions of the format o the format of the format o the fo
					16	Sedie .
		0	4 Helium	20 10 Neon 10 Afgor 18 Argor	86 Radon 86 Radon 86 Radon	175 Lutetium Lawrencium 103
		١١٨		19 9 Fluorine 35.5 35.5 35.5 17 Chlorine	80 Bromine 35 Bromine 1 1 53 Astatine 85 Astatine	Nobelium 70 Nobelium 102
		١٨		a Coygen 32 32 33 32 Sulphur 16 Sulphur 16 Sulphur	79 Selenium 34 128 Tellurium 52 Polonium 88	69 Mendelevium 101
		>		Nitrogen Nitrogen 31 31 15	75 Arsenic 33 Arsenic 33 Arsenic 23 Antimony 51 209 209 209 88 Bisenuth	167 100 100 100 100 100 100
		2		6 Carbon 6 28 28 28 28 28 14 Silicon	73 Gemanium 32 119 50 Tin 50 Co7 82 Lead	_ E
		≡		11 5 Boron 27 13 Aluminium	70 Ga 31 Calitum 115 1 115 116 116 117 115 117 117 116 117 117 117 117 117 117 117	Dysprosium 66 Cf Ballomium 98 Dressure (
nts					65 30 Zhr 112 Cadmium 48 201 201 80 80 Mercury	estratium BK BK BR BR BR BR BR BR BR BR BR BR
DATA SHEET Periodic Table of the Elements					64 Copper 29 Copper 108 108 197 197 79 Codd	ed Carlium 96 Carlium 96 Carlium 96 Carlium 96 Carlium 96 Carlium 96 Carlium 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlium 96 Carlium 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlium 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 96 Carlinum 10 10 10 10 10 10 10 10 10 10
DATA SHEET ic Table of th	dn				59 Nickel 106 195 195 195 195 195 195 78	n ³ at room
DATA odic Tał	Group				59 27 103 45 192 192 192 192 192 192 7 7 164um	es amarium es 24 dm s is 24 dm
The Peri			¹ Hydrogen		56 Fe Fe Ion 101 84 Ruthenium 44 190 08 mium 76	e of any gas
Г]	55 Manganese 25 Tc Technetum 186 Rentum 75 Rentum	144 Neodymium 60 238 92 ^{Uranium} 92 Uranium
					52 Cr Cr Cr Cr Molyddenum 42 184 42 184 124 134 134 134 134 134 134 134 134 134 13	140141144144Total146
					51 23 ^{anadum} 23 33 33 33 41 181 181 181 181 73 ^{anatum} 73 73	The vo
					48 11 31 31 31 31 31 31 31 31 31 31 31 31	number
					45 Scandium 21 39 Yitrium 39 Yitrium 39 Lanthanum 57	227 89 Activium 1 bid Series a = relative atomic mass X = atomic symbol b = proton (atomic) number
		=		9 Berylium 4 24 Mg Mg 12	20 ^{Calclum} 20 ^{Calclum} 38 ^{Strontum} 38 ^{Strontum} 56 ^{Banum}	B ²²⁶ Radium Radium B ²²⁶ A a a r x b = p b = p
		_		1 Sodum Sodum	39 Padassium 19 85 85 Rubdum 37 Caestum 55	Fraction 226 BR 227 Actinium 226 BR 227 Actinium 227 BR 227 Actinium *58-71 Lanthanoid series a = relative a *58-71 Lanthanoid series *59-71 Lanthanoid series *50-103 Actinoid series

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of