MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/02 Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) covalent
(b) correct arrangement with shared electron pair, correct outer shells
(c) any two from:
high melting point
electrolyte when molten or aqueous
crystalline
soluble in water
etc. $1+1$
[Total: 4]

2 (a) $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or $6.0 / 2.4$
$=2.5 \Omega$
1
(b) 5.0Ω (e.c.f.)
(c) $\mathrm{I}=\mathrm{V} / \mathrm{R}$ or $=6 / 5$ (e.c.f.)
$=1.2 \mathrm{~A}$

1
[Total: 5]

3 (a) substance which (is burned to) release heat / energy
(b) (i) any two from:
non-polluting / makes only water when burned easy to transport through pipes
lights easily
high heat output
etc.
$1+1$
(ii) has to be manufactured / etc.
(c) (i) fermentation
$\begin{array}{ll}\text { (ii) add to limewater } & 1 \\ \text { turns cloudy / milky / white precipitate } & 1\end{array}$
(iii) fractional distillation

4 (a) (i) greater amplitude
(ii) more waves on screen / waves close together (accept higher frequency / shorter wavelength)
(b) (i) $20000 \mathrm{~Hz}(20 \mathrm{kHz})($ accept $10-30 \mathrm{kHz})$
(ii) $v=$ distance $/$ time or distance $=$ vt or $320 \times 0.075 \quad 1$
$=24 \mathrm{~m}$
bat $1 / 2$ this distance $=12 \mathrm{~m}$ from wall
$=150(\mathrm{Nm})$
(ii) $150=\mathrm{F} \times 2.4$
$\mathrm{F}=63(62.5) \mathrm{N}$
(if final force (62.5 N) is correctly found and inserted into
(i) score 3 out of 4 marks, ignore remainder in (ii)).
(b) (i) horizontal line at 2.5 m
diagonal line to time axis covering 8 s .
(ii) attempt to find area under graph $\quad 1$
$(2.5 \times 12)+(1 / 2 \times 2.5 \times 8)$
$=40 \mathrm{~m}$
[Total: 9]

6 (a) mixture of metals
(b) e.g. brass
ornaments / electrical terminals / etc.
(c) (i) painting / chrome plating / etc.
(ii) too dense / too expensive / not strong enough / etc.
(iii) both angle of incidence and angle of reflection correctly drawn
(iv) angle of incidence $=$ angle of reflection
(b) (i) conduction
(ii) hot water less dense than cold
therefore floats / rises to the top
(mention of convection-C1)
(c) (i) distillation
(ii) idea of waste energy from turbine used
(a) A turns red
no gas $1+1$
B fizzes / dissolves hydrogen
$1+1$
C fizzes / dissolves
carbon dioxide
$1+1$
(b) no change
relevant explanation about acids
e.g. all contain hydrogen ions, etc.

9 (a) splitting of nucleus (into two more or less equal halves) 1 with release of energy

Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE - October/November 2009	0652

10 (a)

	2
hydrogen	8
sulfur	1
oxygen	4
(3 correct names $=1$ mark $)$	
(4 correct numbers = 3 marks; 3 correct = 2 marks; 2 correct = 1 mark)	

(b) 28 g
(allow one mark for ' 2 atoms nitrogen' with incorrect final answer)
(calculation of mass of one mole of ammonium hydroxide $=(80) \mathrm{C} 1$)
[Total: 6]

11 (a) source (much) nearer to detector
because alphas short range or different type of detector
1
(b) (i) mention of background count 1
subtracted from original count 1
(ii) smooth curve going within 1 square of all points
(iii) clear working or 12.5 ± 1.0 s
$12.5 \pm 0.5 \mathrm{~s}$ 1

12 (a) faster
(b) (i) unreactive / can withstand high temperature / etc.
(ii) only small amount needed / increases surface / etc.
(c) not used up by reactions
(d) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ (correct formulae - 1 mark correct balancing - 1 mark)

Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE - October/November 2009	0652

13 (a)

particle	relative mass	relative charge
electron	0 / very small / / $1 / 2000$ etc.	-1
neutron	1	0
proton	1	+ 1

(b) number of protons in an atom / nucleus

