

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 8.

At the end of the examination, fasten all your work, including ray diagrams in Question 1, securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 8 printed pages.

- Www.papacambridge.com 1 Carry out the following experiment to plot the path of a ray of light through a recta block.
 - (a) Record the value provided of the refractive index of the block.

refractive index =

(b) Place the block on a sheet of paper and draw a pencil line around it. Remove the block. Draw a normal to the top line, about a third of the way along from the left hand side. Using a protractor, draw a line at 30° to the block, making an angle of incidence, i, of 60°. Place two pins, P_1 and P_2 , on this line as shown in Fig. 1.1.

Fig. 1.1

Replace the block in its original position inside the pencil lines already drawn.

Look through the edge of the block from the other side so that images of these first two pins can be seen. Move your head until P_2 is in line with P_1 . Place two more pins into the paper in line with the images. Label these positions P_3 and P_4 . Remove the block and pins and complete the diagram as shown in Fig. 1.2.

Fig. 1.2

Measure the angle of incidence, i, and the angle of refraction, r. Record these in Fig. 1.3.

(c) Repeat using an angle of 35° to the block, making an angle of incidence, i, of 55°. Measure and record the angles of incidence and refraction in Fig. 1.3. Use a fresh sheet of paper if necessary.

 3

 (d) Make three further sets of measurements using angles of 50°, 60° and 70° to the producing angles of incidence, i, 40°, 30° and 20°. Use a fresh sheet of paper if necess Measure and record the angles of incidence and refraction in Fig. 1.3.

 index of incidence i

 angle of incidence i

 angle of refraction r

angle of refraction r

Fig. 1.3

Attach your ray diagrams to your question paper at the end of the examination.

(e) Plot a graph of angle of incidence (vertical axis), against angle of refraction (horizontal axis). Draw a smooth curve through your points.

[5]

	www.xtrapa	pers.com
	4	
(f)	Read off the angle of incidence for an angle of refraction of 25°. Record this in the space below.	For iner's
	angle of incidence = [1]	age.c.
(g)	The refractive index of the glass is given by	917
	sine (angle of incidence) sine (angle of refraction)	
	Use the table of sines of angles, Fig. 1.4 to find this ratio for the angles in (f) . If necessary, estimate the value of sine i from Fig. 1.4.	
	sine of angle of incidence recorded in (f) =	
	sine of angle of refraction 25° =	
	Calculate the refractive index of the block.	

refractive index = [2]

angle/°	sine of angle
25	0.423
30	0.500
35	0.574
40	0.643
45	0.707
50	0.766
55	0.819

Fig. 1.4

(h) Does your result for the refractive index agree with that given and recorded in (a)? Comment on your answer.

[1]

	5	rapapers.com
	3	
(i)	How would the angles of refraction, recorded in Fig. 1.3, differ for a block of a refractive index?	For iner's
		10
	Explain your answer.	30
		[2]

- Www.PapaCambridge.com 2 You are provided with three solutions, A, B and C, of potassium manganate(VII) ea a different concentration. You will use solution X to determine the most concent solution. A. B or C.
 - (a) Using the dropping pipette and no other apparatus, produce drops of water and estimate the volume of one drop.

estimated volume of one drop = _____cm³ [1]

- (b) Using the small measuring cylinder, place 3 cm³ of solution A into a test-tube. Add a few drops of dilute sulfuric acid. Using the dropping pipette, add solution X a drop at a time, counting the drops until the solution turns colourless. Record the number of drops in the table below.
- (c) (i) Repeat test (b) using solution **B**.
 - (ii) Repeat again using solution C. This time, keep the colourless solution for use in (e).

solution	number of drops
Α	
В	
C	

[4]

(d) Which is the most concentrated solution, **A**, **B** or **C**? Explain your answer. most concentrated solution is

explanation

[2]

(e) To the colourless solution from test (c)(ii), add sodium hydroxide solution until no further change occurs.

Record your observation below.

observation = [1]

(f) Carry out the following tests on solution X.

Record your observations.

(i) Place about 2 cm^3 of solution **X** in a test-tube. Add a few drops of hydrochloric acid followed by drops of barium chloride solution.

observation = [1]

6

AND	xtrapapers.com	
7	and the second s	
(ii) Place about 2 cm ³ of solution X in a test-tube. Add a few drops of nition followed by drops of silver nitrate solution.	For iner's	
observation =	[1] 'Idge.co.	
(iii) Place about 2 cm ³ of solution X in a test-tube. Add sodium hydroxide solution no further change occurs.	n until	
observation =	[1]	
(g) Name solution X.	[2]	
(h) In test (a) you estimated the volume of a drop from the dropping pipette. Describe how you could more accurately find the volume of one drop.		
	[2]	

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	8 CHEMISTRY PRACTICAL NO	TES RADIO Combinings
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ·) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH_4^+)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.