UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2011	0652	31
1	(a)	50 m/s ;				[1]
	(cons	tant	tion/deceleration/slowing down ; /steady referring to acceleration/deceleration calculated value of acceleration/comes to rest ;	(not at cons	tant [2]
	(c)			of gradient, (a = (30 – 0)/(10 – 0)) ; n/s² ;		[2]
	(of F = ma = 1500 × 3.0 (e.c.f.) ; 00 N ;		[2]
	(i	 (iii) mention of frictional force/air resistance ; force from engine = accelerating force + frictional force/work done agains friction ; 				iinst [2]
	 (d) (car B); larger gradient/same mass (not accept shorter period of time); greater acceleration/deceleration; (both marks can be scored for a correct calculation of both accelerations and comment) 					[2] and
						[Total: 11]
2	(a)	i I	all fo balai	$P + 2CO \rightarrow N2 + 2CO_2$ formulae correct ; nced ; $+ CO \rightarrow N + CO_2 max 1)$		[2]
	(ii)		carb (mar gain	gen (monoxide) is reduced because it has lost oxyg on (monoxide) is oxidised because it has gained ox ks can be gained for correct reference to /oxidation states) ax if general explanation without reference to NO ar	ygen ; electron loss	[2] and
	(i) (((perc (perc	two: centage) of nitrogen monoxide has decreased ; centage) of nitrogen has increased ; centage) of carbon monoxide has decreased ; centage) of carbon dioxide has increased ;		[max 2]
	(i	· \ (with (if th	on monoxide reacts with oxygen to form carbon dio oxygen to form water ; le carbon monoxide to carbon dioxide process is no e here)		[1]
	(b)	Z	zinc	anising means coating with zinc ; more reactive than steel/iron ; reacts not iron/sacrificial reaction ;		[3]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – October/November 2011	0652	<u>31</u> [1]		
	 (ii) painted steel will rust if scratched or chipped but galvanised will not (rust); (both required, but allow the comment re zinc not reacting if included in (i)) 						
					[Total: 11]		
2	(a) the	bond	vibrataa :				
3	 (a) the band vibrates ; causing air (molecules) to vibrate/forming a longitudinal/compression wave <u>in</u> <u>the air</u>; 						
	 (b) 4.5 or 5 waves number of waves or specified number of divisions ; 4.5 in 4 divs (accept 5 waves in 5 divs) ; 						
	f = 450 (Hz) ; (allow rounding errors for answer) (use of only one wave – 2 max, raw answer 400 Hz – 2 max)						
					[Total: 5]		
4	(a) (i)	light	provides <u>energy</u> ;		[1]		
	(ii)	redu	ction is gain of an electron/oxidation state goes down	;	[1]		
	(iii)	Ag⁺ ·	$+ e^- \rightarrow Ag;$		[1]		
	(b) (i)	reac filter wash leave	(to obtain ppt) ; n <u>ppt</u> with distilled water ; e <u>ppt</u> to dry ;	on until no furt			
) in dark ;		[max 4]		
	(ii)	-	$O_3 = 170 \text{ and } AgBr = 188 ;$ ber of moles = $\frac{5}{170}$ (accept $\frac{5}{188}$);				
		= 5.5	110 100		[3]		
					[Total: 10]		
5	(a) (i)		of <i>I</i> = <i>V/R</i> (= 6/48) ; I25 A (0.13 A) ;		[2]		
	(ii)	(e.c.: = 36	f.) use of <i>R</i> = <i>V/I</i> (= 4.5/0.125) ; Ω ;		[2]		
	(b) R=	= V/I =	$3.0/0.125 = 24 \Omega/discussion re \frac{1}{2}$ potential difference	e leads to ½ R ;	[1]		
	(c) (i)	R = 2	of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept sub 24/4 = 6 Ω ; at show R = 6 Ω)	m/product) ;	[2]		

Page	e 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – October/November 2011	0652	31	
(i	i i) (6	5 + 24 =) 30 Ω ;		[1]	
(ii		e.c.f.) current = 6/30 = 0.2 A ; otential difference = 0.2 × 6 = 1.2 V ;		[2]	
(iv	,	m/not properly lit if potential difference otential difference > 3, normal if potential difference = 3		if [1]	
				[Total: 11]	
• •	(a) CaCO ₃ = 100 ;				
n	number of moles = $\frac{2.5}{100}$ or 0.025 ;				
	= 0.6			[3]	
(b) (alcium oxide is a base because it gains a proton/th	ne oxide ion gain	s a	
	h	roton ; ydrochloric acid is an acid because it donates a proton nax 1 if neither refers to specific reaction)	;	[2]	
(i	a	mphoteric ; cidic ; eutral ;		[3]	
				[Total: 8]	
7 (a) (th	e needle of the voltmeter moves ; en goes back to zero ; lo not allow if there is a residual current. e.g. needle fa	lls to zero)	[2]	
/-		-		[4]	
()		hen the magnet moves the coil cuts/there is a <u>change</u> hich <u>induces</u> an e.m.f./current ;	in magnetic flux ;	[2]	
(b) tl	he ne	edle of the voltmeter moves in the opposite direction ;		[1]	
	 (c) wave trace seen on the cathode ray oscilloscope ; changing current produces changing field ; 				
				[2] [Total: 7]	
0 (2) (/I)			F.4.1	
8 (a) (oble gases (do not accept inert, rare) ;		[1]	
(i	•	oiling point increases/density increases/mass increase ith increasing atomic number/down group ;	es ;	[2]	
(ii	i i) ui	nreactive (accept inert) ;		[1]	
(iv	v) ai	ny value between 4.5 and 9.9 kg/m³ ;		[1]	

P	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0652	31
(b	o) (i)	diag	ram showing 8 electrons in outer shell ;		
(-, (-,		ells with 2 electrons in first shell and 8 in second sh	ell ;	[2]
	(ii)	pota	assium, 1+ OR chloride, 1- ;;		[2]
	(iii)		electrons ; electrons are <u>lost</u> ;		[2]
					[Total: 11]
9 (a	a) (i)	liqui	d turns to vapour/gas (<u>not</u> molecules) ;		[1]
	(ii)	evap OR boili evap OR	ng: bubbles of vapour form in the liquid ; poration: molecules leave the surface of the liquid ; ng occurs at fixed temperature ; poration at a range of temperatures 1 ; ng is a violent process (1 max) ;		[max 2]
(b	o) 15	– 25 °	°C ;		[1]
(c	en cle) molecules lose energy/slow down etc. ; (not accept molecules lose thermal energy) clear energy loss is loss in <u>kinetic</u> energy/energy is transferred to the surroundings/ <u>hence</u> temperature falls ;			
					[2] [Total: 6]