

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME													
	CENTRE NUMBER CANDIDATE NUMBER													
* 4 4	PHYSICAL SCIENCE		0652/22											
	Paper 2 (Core)	October/November 2011												
5 2		1 hour 15 minutes												
- <u></u>	Candidates answer on the Question Paper.													
3 1	No Additional Materials are required.													
*	READ THESE INSTRUCTIONS FIRST													
	Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working.													
	Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.	For Examiner's Use												
		1												
	Answer all questions. A copy of the Periodic Table is printed on page 16.	2												
		3												
	At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part	4												
	question.	5												
		6												
		7												
		8												
		9												
		10												
		11												
		12												
		13												

This document consists of 16 printed pages.

Total

For Examiner's Use

					2			
1	A lis	t of apparatus co	ommonly foun	d in the lab	oratory is	s shown belov	Ν.	
		balance	beaker	bure	tte	spatula	thermometer	,
	Cho	ose the item fror	n the list whicl	h you would	d use to c	arry out each	of the following ac	tions.
	(a)	weigh 0.5g of o	copper(II) cart	oonate				
	(b)	measure 25.0 c	cm ³ of water					••••
	(c)	find the temper	ature of boilin	g ethanol				
	(d)	react together a	an acid and ar	n alkali				[4]
2		cars are being t 2.1 shows the s		-		, each of mas	ss 1500 kg.	
		speed m/s			car A			

40

20

time/s

30

10

Fig. 2.1

0

(a) Determine the maximum speed of car A.

Describe the motion of car B during the last 2.5 s of the test.	For Examiner's Use
[2]	
Use the graph to determine the distance travelled by car ${\bf B}$ during the first 10 s of the test.	
distance = m [2] From 10.0 s to 37.5 s car B is travelling at constant speed in a straight line.	
(i) State the resultant force on the car during this time.	
force =[1]	
(ii) Explain why the car engine must continue to do work during this period.	
[1]	
At the beginning of the test both cars accelerate from rest.	
Explain which car produces the greater accelerating force.	
[2]	
	[2] Use the graph to determine the distance travelled by car B during the first 10 s of the test. distance = m [2] From 10.0 s to 37.5 s car B is travelling at constant speed in a straight line. (i) State the resultant force on the car during this time. force = [1] (ii) Explain why the car engine must continue to do work during this period.

For Examiner's Use

(c) Draw a dot and cross diagram to show the electron arrangement in an atom of magnesium.

[2]

4

4	(a)	Name the main ore of aluminium.	[1]	For Examiner's Use
	(b)	Explain why aluminium is not extracted from its ore by heating with carbon.		
			[2]	

For

Examiner's Use

5 A student is investigating the melting of fruit flavoured crushed ice. Initially, the temperature of the ice is -10 °C. He measures the temperature every 30 s.

Fig. 5.1 shows the apparatus he uses.

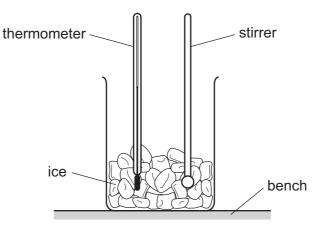


Fig. 5.1

(a) (i) Explain why the student stirs the crushed ice just before taking each temperature reading.

.....[1] (ii) Suggest why, in the first two minutes of the experiment, the temperature of the ice rises, even though there is no apparent heat source. [2]

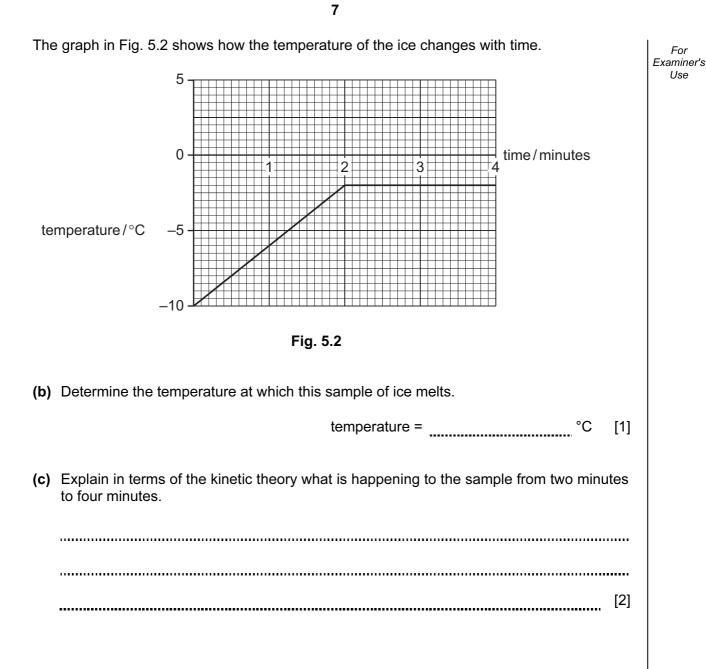
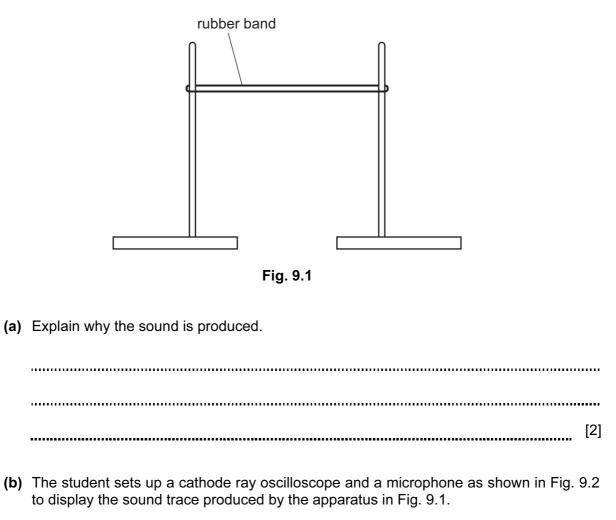


Table 6.1

For Examiner's Use


		n	ame	formula	mass of 1 mole/g								
				H ₂ O									
		hydrog	en chloride		36.5								
		sodiu	m fluoride		42								
				N ₂									
					[4	1]							
	 (b) Give the symbols for the ions in sodium fluoride and the number of protons present in each ion. sodium ion												
		fluoride ion		number of protor	ıs [ź	2]							
7	Th	e radioactive	isotope ¹⁰⁵ Rh de	ecays by emitting a beta-partic	cle (β-particle).								
	(a)	(i) State t	he number of pro	otons in the nucleus of this isc	otope.								
				number of	protons =[1]							
		(ii) Calcula	ate the number o	f neutrons in the nucleus.									
				number of ne	eutrons =[1]							

	(b)	(i)	What is a beta-particle?	Ex	For xaminer's Use
				[1]	
		(ii)	Describe the changes in the nucleus when a beta-particle is emitted.		
				[2]	
8	(a)		e an advantage and a disadvantage of using hydrogen as a fuel for motor vehicle	s.	
		adv	antage		
		disa	advantage	[2]	
	(b)	Wri	te a balanced equation for the burning of hydrogen in air.		
		•••••		[2]	
	(c)	Des	scribe a test for hydrogen and state the expected result.		
		test			
		resi	ult	[2]	
	(d)	The	e reaction between hydrogen and nitrogen is an important industrial process.		
		(i)	Name the gas formed.		
		<i>/</i> ///	······	[1]	
		(ii)	Name this industrial process.		
				[1]	

For

Examiner's Use

9 A student experiments with a rubber band. She stretches it between two retort stands and notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 9.1.

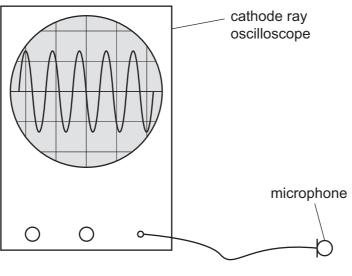
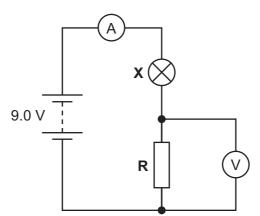


Fig. 9.2

For

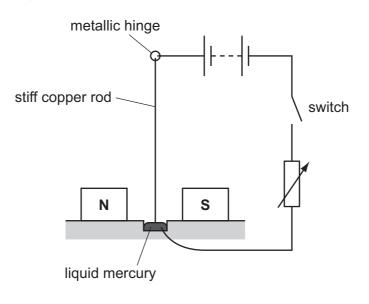

Examiner's Use

(i) She now plucks the rubber band so that a quieter note of the same frequency is heard.
Draw, on Fig. 9.3, the trace that is now seen.
[2]
Fig. 9.3
(ii) She moves the stands further apart. She plucks the band again. The frequency of the sound now heard is greater than before.
Explain what is meant by the term *frequency* and state the unit used to measure it.
unit ______ [2]

10	Chl	orine is in Group VII of the Periodic Table.		For Examiner's
	(a)	Name this Group.		Use
			[1]	
	(b)	Name another element in this Group.		
			[1]	
	(c)	State one use of chlorine.		
			[1]	
	(d)	Name the Group II element which is in the same period as chlorine.		
			[1]	
	(e)	Describe how, using chlorine, you can show that a solution contains bromide ions.		
			[2]	
	(f)	Write down the number of electrons in a bromine atom and in a bromide ion.		
		bromine atom		
		bromide ion	[2]	

For Examiner's Use

11 Fig. 11.1 shows an electric circuit. The e.m.f. of the battery is 9.0 V.


(a)	Nar	ne component X .		[1]							
(b)	The	resistance of resistor R is 12Ω and	the resistance of component X is 8.0 Ω .								
	(i)	Calculate the combined resistance of R and X .									
			resistance =Ω	[1]							
	(ii)	Calculate the current measured by	the ammeter.								
			current =	[2]							
	(iii)	Calculate the reading on the voltme									
			reading =V	[2]							
			· · · · · · · · · · · · · · · · · · ·	[-]							

12	Met seri	hane and ethane are hydrocarbons. They are members of the same homologous es.	For Examiner's Use
	(a)	Name this homologous series.	
		[1]	
	(b)	Give the name and formula of the next member of this series.	
		name	
		formula[2]	
	(c)	Explain why ethanol, C_2H_5OH , is not a hydrocarbon.	
		[2]	

For

Examiner's Use

13 (a) Fig. 13.1 shows a stiff copper rod suspended between two magnetic poles. The copper rod is freely hinged at the top.

Fig. 13.1

(a)	Draw, on Fig. 13.1, the magnetic field between the poles.	[3]
(b)	Explain why a current passes through the circuit when the switch is closed.	
		[2]
(c)	State what will be observed when switch is closed.	
		[2]
(d)	The connections to the battery are reversed so that the current in the circuit is in the opposite direction.	he
	State how the observations change.	
		••••
		[1]

© UCLES 2011

		0	4	He	Helium	20	Ne	10 Neon	40	Ar	Argon 18	84	Kr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86				175	Lu	Lutetium 71		Ļ	Lawrencium 103					
		١١٨			2	19	ш	Fluorine 1	35.5	C1	17 Chlorine	80	Br	0	127	I	53 lodine		At	Astatine 85				173	۲b	70 Ytterbium		No	Nobelium 102					
		N				16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84				169	T	Thulium 69		Md	Mendelevium 101					
		>				14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83				167	ш	Erbium 68		Fm	Fermium 100					
		2				12	ပ	Carbon 6	28	Si	Silicon 14	73	9 B	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				165	Ч	Holmium 67		Es	Einsteinium 99					
		≡				11	ß	Boron 5	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81				162		Dysprosium 66		ç	Californium 98					
ents													Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Tb	Terbium 65		Bķ	Berkelium 97					
DATA SHEET The Periodic Table of the Elements												64	Cu	Copper 29	108	Ag		197	Au	Gold 79				157	Gd	Gadolinium 64		Cm						
DATA SHEET ic Table of th	Group											59	ïZ	Nickel 28	106	Pd	Palladium 46	195	£	Platinum 78				152	Eu	Europium 63		Am	Americium 95					
DAT/ iodic Ta	Gre											59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Sm	Samarium 62			Plutonium 94					
The Per			-	т	Hydrogen 1							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	os	Osmium 76					Pm	Promethium 61		Np	Neptunium 93					
												55	Mn	Manganese 25		ц	Technetium 43	186	Re	Rhenium 75				144		Neodymium 60	238	D	Uranium 92					
																52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	≥	Tungsten 74				141	Pr	Praseodymium 59		Ра	Protactinium 91	
												51	>	Vanadium 23	93		Niobium 41	181	Ta	Tantalum 73				140	Ce	58 58	232	Ч	Thorium 90					
												48	F	Titanium 22	91	Zr	Zirconium 40	178	Ħ	Hafhium 72				1			nic mass	bol	nic) number					
												45	Sc	Scandium 21	89		Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Actinium 89 †	o orioo	eries		a = relative atomic mass	X = atomic symbol	b = proton (atomic) number					
		=				6	Be	Beryllium 4	24	Mg	Magnesium 12	40		_		Sr	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	*EQ 71 Lonthonoid corrise	190-103 Actinoid series		a	×	P					
		_				7	:-	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85		Rubidium 37	133	cs	Caesium 55		ŗ	Francium 87	* 50 71 1.	190-103			Key	q					

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.