

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/32

Paper 3 (Extended)

October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 18 printed pages and 2 blank pages.

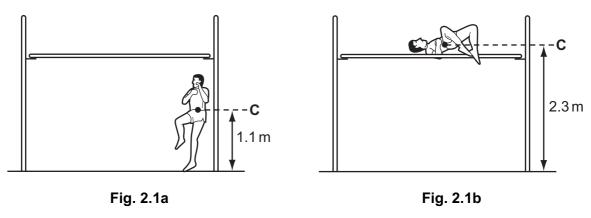
1 Table 1.1 shows elements in a period of the Periodic Table.

For Examiner's Use

Table 1.1

group	I	II	III	IV	V	VI	VII
element	Na	Mg	Αl	Si	Р	S	Cl

(a)	Des	scribe how th	e electronic structure of su	uccessive elements differs	across the period.
	•••••				[1]
(b)		mplete Table -metals.	e 1.2 to show which of	these elements are meta	als and which are
			Table 1	.2	
			metals	non-metals	
					[1]
(c)	Cal	oium forms a	n ion Ca ²⁺ . Chlorine form a	on ion CI ⁻	
(0)	(i)		formula for the ionic comp		
	('')	Deduce the	Torrida for the forme comp	ound calcium omoride.	[1]
	(ii)	Describe, ir chloride.	n terms of electrons, hov	v calcium and chlorine at	oms form calcium


(d)	Sulfur dioxide is a covalent molecule.
	In the box below, draw a diagram to show the arrangement of all the outer electrons of the atoms in a molecule of sulfur dioxide.

[3]

[2]

2 Fig. 2.1a shows a high jumper about to leave the ground. Fig. 2.1b shows the same high jumper at the top of his flight.

For Examiner's Use

The high jumper has a mass of 75 kg. Point ${\bf C}$ shows the centre of mass of the high jumper.

(a)	Explain what is meant by the term <i>centre of mass</i> .

(b) (i) Calculate the increase in the gravitational potential energy of the high jumper from when he leaves the ground to when he reaches the top of his flight.

$$[g = 10 \, \text{N/kg}]$$

increase in gravitational potential energy = _____ [2]

(ii) State the minimum kinetic energy with which the high jumper must leave the ground.

(c)	On a second jump the same high jumper leaves the ground with kinetic energy of 750 J.
	Calculate the speed at which he leaves the ground.
	speed =[3]
(d)	The gain in potential energy of the high jumper is less than the work he does in his take off.
	Suggest a reason for this.
	[1]

3

Magnesium sulfate is a salt that is soluble in water.
It can be made in the laboratory from solid magnesium oxide, MgO, and dilute sulfuric acid, $\rm H_2SO_4$.
(a) Describe how you would make pure dry crystals of magnesium sulfate from solid magnesium oxide and dilute sulfuric acid.
[4]
(b) Write a balanced equation for the reaction between magnesium oxide and sulfuric acid.
Include state symbols in your equation.
[3]
(c) Magnesium sulfate can also be made from magnesium hydroxide and sulfuric acid.
$Mg(OH)_2 + H_2SO_4 \longrightarrow MgSO_4 + 2H_2O$
What is the maximum mass of magnesium sulfate that could be made from 5.0 g magnesium hydroxide?
[Relative atomic masses: A _r : H,1; Mg,24; O,16; S,32]
Show your working in the box.
mass of magnesium sulfate = g [3]

4 Fig. 4.1 shows a wind powered generator which has an efficiency of 30 %.

Fig. 4.1

The generator depends on a form of energy possessed by the wind.	
Name this form of energy and briefly explain your answer.	
	[2]
Explain what is meant by the phrase the generator has an efficiency of 30%.	
	[2]
	Name this form of energy and briefly explain your answer.

(c) The generator has a maximum output of 4500 W at 230 V.Calculate the maximum current that can be taken from the generator.

current = [2]

5 A student uses the apparatus shown in Fig. 5.1 to investigate the reaction between magnesium and hydrochloric acid.

For Examiner's Use

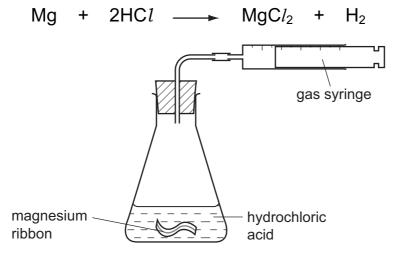


Fig. 5.1

She measures, at room temperature and pressure, the hydrogen given off when magnesium ribbon reacts with an excess of dilute hydrochloric acid.

Results of her investigation are shown in Fig. 5.2.

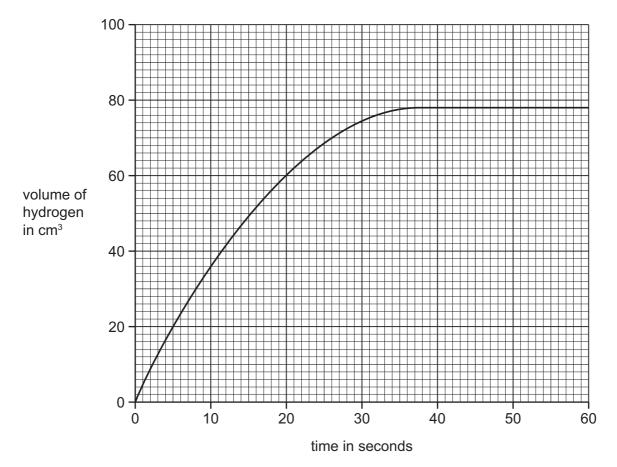


Fig. 5.2

(a)	(i)	State the time at which the reaction stopped.	
	(ii)	Explain why the reaction stopped.	[1]
			[1]
(b)		e experiment is repeated using the same mass of magnesium ribbon and a moncentrated solution of hydrochloric acid.	ore
	On	Fig. 5.2, sketch the line you would expect for this second experiment.	[2]
(c)	Cal	culate the mass of magnesium used in the reaction.	
	[Re	lative atomic masses: A _r : H,1; C <i>l</i> ,35.5; Mg,24.]	
	The	e volume of one mole of any gas is 24 dm ³ at room temperature and pressure.	
	Sho	ow your working in the box.	
		mass of magnesium = g	[4]

6 (a) Fig. 6.1 shows a parallel beam of light incident on a converging lens.

For Examiner's Use

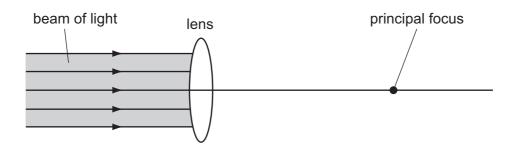


Fig. 6.1

- (i) On Fig. 6.1, draw rays to show the path of the light after it passes through the lens. [3]
- (ii) On Fig. 6.1, draw an arrow to show the focal length of the lens. [1]
- (b) (i) Jan uses a converging lens of focal length 10.5 cm to study a small insect. Point P on the insect is 5.0 cm from the centre of the lens.

On Fig. 6.2, draw **two** rays from point **P** to show how and where the image of the insect is formed. [3]

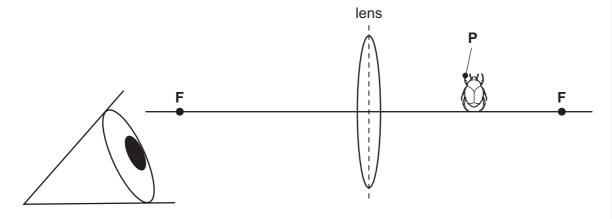


Fig. 6.2

(ii) Give a full description of the image.

[2]

7

Zinc and copper are two commonly used metals.	For Examiner's
(a) Zinc is mixed with copper to make the alloy brass.	Use
Brass is stronger than either pure metal. Explain why.	
	[3]
(b) Zinc is used to make galvanised steel.	
(i) What is galvanised steel?	
	[1]
(ii) Explain how galvanised steel is more useful than steel that has galvanised.	not been
	[1]
(iii) Explain how zinc makes this improvement to steel.	
	[2]
(c) Copper is used to make saucepans.	
State which property of copper makes it a good choice for this application.	
	[1]

8 Daniel is investigating the resistance of a length of nichrome wire. He builds the circuit shown in Fig. 8.1.

For Examiner's Use

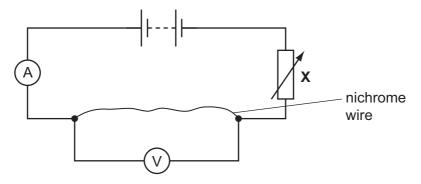


Fig. 8.1

(a) He takes a series of readings of the current with different potential differences across the nichrome wire. He uses his results to draw the graph shown in Fig. 8.2.

Fig. 8.2

(i) Describe how he varies the potential difference across the nichrome wire.

	(ii)	Use the graph to determine the resistance of the nichrome wire.
		Show your working.
		resistance =[3]
(b)	Daı	niel then uses a second piece of nichrome wire half the diameter of the original wire.
	Cal	culate the resistance of this piece of wire.
		resistance =[2]

Examiner's Use

9	Poly(ethene)	is made	from	ethene,	C_2H_4
---	--------------	---------	------	---------	----------

(a) Ethene is an unsaturated compound.

			_				
Explain	the	meaning	ot	the	term	unsaturat	ted.

.....

(b) Describe how the ethene for this process is made.

.....

(c) Complete this equation to show the formation of poly(ethene) from ethene.

$$\begin{array}{c} \longrightarrow & \begin{bmatrix} \mathsf{H} & \mathsf{H} \\ \mathsf{I} & \mathsf{I} \\ \mathsf{C} - \mathsf{C} \\ \mathsf{I} & \mathsf{I} \\ \mathsf{H} & \mathsf{H} \end{bmatrix}_{\mathsf{I}}$$

[2]

Please turn over for Question 10.

10 Fig. 10.1 shows a transformer.

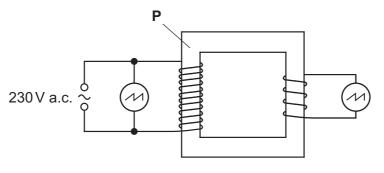


Fig. 10.1

The input is connected to a cathode ray oscilloscope (c.r.o.) and the output is connected to another c.r.o.

(a)	(i)	The transformer works by electromagnetic induction.	
		Explain what is meant by electromagnetic induction.	
		[2	<u>?]</u>
	(ii)	Explain why the input to the transformer must be an alternating voltage.	
		[2	<u>?]</u>
	(iii)	P is the transformer core.	
		Name the material that P is made from. [1]
	(iv)	Outline the role of P in the operation of the transformer. Your answer should include the properties of the material which make it suitable.	d
		[2	2]

(b) (i) This transformer allows an appliance designed to be used on a 115V supply to be used on a 230 V supply.

For Examiner's Use

Calculate the turns ratio of the primary coil to the secondary coil ($N_{primary}$: $N_{secondary}$).

$$(N_{\text{primary}}: N_{\text{secondary}}) =$$
 [1]

(ii) Fig. 10.2 shows the screen of the c.r.o. that is connected to the input.

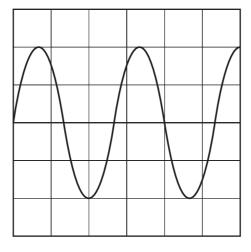


Fig. 10.2

On Fig. 10.2, draw the trace that would be obtained on the c.r.o. connected to the output.

You should assume that the time base and y-gain settings of the two cathode ray oscilloscopes are the same. [2]

18

BLANK PAGE

19

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

								Gr	Group								
_	=											=	2	^	I	II/	0
							1 Hydrogen										4 He lium
Lithium 3 23 23 Na Sodium 11	Be Beryllium 4 24 Mag Magnesium 12	E E				-						11 B Boron 5 27 A1 Auminium 13	Carbon 6 Carbon 8 Si Siicon 14	14 N Nitrogen 7 31 P Phosphorus 15	16 Oxygen 8 32 S Suffur	19 Fluorine 9 35.5 C1	20 Neon 10 At Argon 18
39 K Potassium	Ca Calcium	Scandium 21	48 Ti Titanium 22	51 Vanadium 23	52 Cr Chromium 24	Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	S9 Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
Rubidium 37	Strontium 38	89 Y	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	Sn Tin	122 Sb Antimony 51	Te Tellurium	127 I lodine	Xe Xenon 54
133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Haf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 I r Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 1	,														
*58-71 190-100	*58-71 Lanthanoid serie 190-103 Actinoid series	*58-71 Lanthanoid series 190-103 Actinoid series		140 Ce Cerium 58	Pr Praseodymium 59	Nd Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	175 Lu Lutetium 71
Key	<i>«</i> Х	a = relative atomic mass X = atomic symbol b = proton (atomic) number	mic mass lbol nic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Cm Curium 96	BK Berkelium 97	Californium 98	ES Einsteinium 99	Fm Fermium	Md Mendelevium 101	Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local