

PHYSICAL SCI Paper 2 (Core) Candidates ans

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

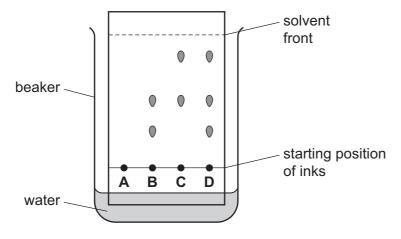
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 24.

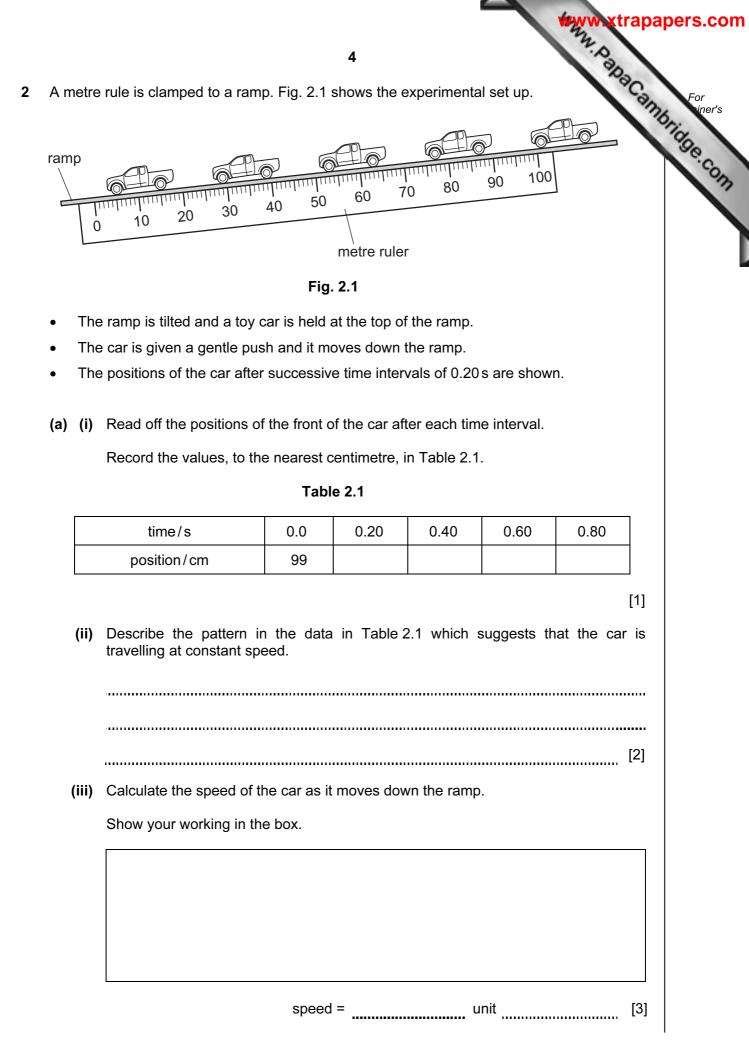
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

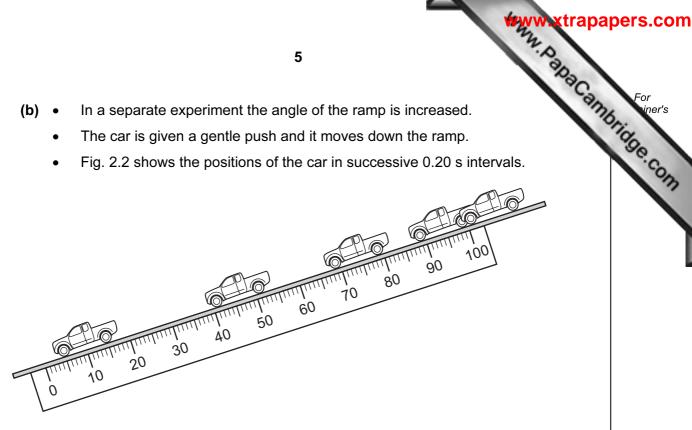

This document consists of 24 printed pages.

Www.papaCambridge.com A student investigates the composition of four different inks using paper chromatogra 1

2

Fig. 1.1 shows the results of his experiment after one hour.



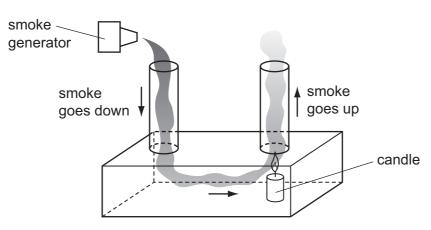

(a) Explain why the water level in the beaker must be below the ink dots at the start of the experiment.[1] (b) Suggest why ink A did not move during the experiment. [1] (c) (i) State how many different components ink D contains. [1] (ii) State one similarity and one difference in the compositions of inks B and C. similarity difference [2]

Please turn over for Question 2.

- (b) In a separate experiment the angle of the ramp is increased.
 - The car is given a gentle push and it moves down the ramp.
 - Fig. 2.2 shows the positions of the car in successive 0.20 s intervals.

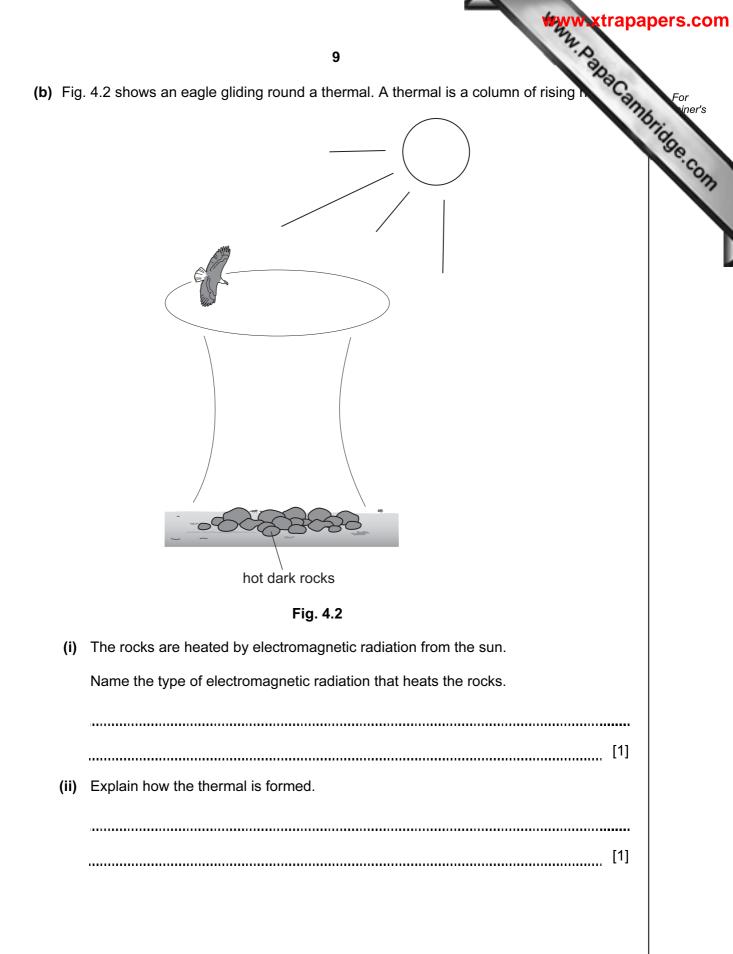
Describe the motion of the car in this experiment.

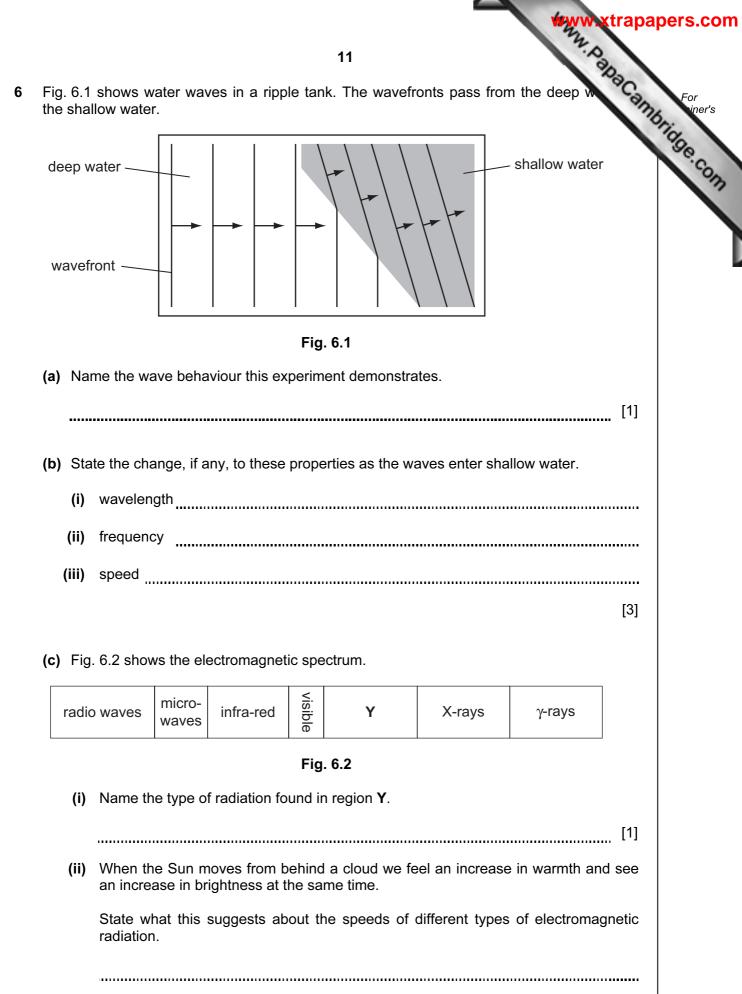
[1]


		www.xtrap	apers.com
		6 Potassium nitrate can be made by reacting an acid with an alkali. Name these reagents. acid alkali [2]	
3	(a)	Potassium nitrate can be made by reacting an acid with an alkali.	For
		Name these reagents.	Ibrid.
		acid	Se.Co.
		alkali [2]	12
	(b)	State the name given to the reaction of an acid with an alkali.	
		[1]	
	(c)	The potassium nitrate formed is in aqueous solution.	
		Describe how you could obtain dry crystals of potassium nitrate from this solution.	

Please turn over for Question 4.

Www.papaCambridge.com Fig. 4.1 shows apparatus used to demonstrate one method of transfer of thermal energy 4


8



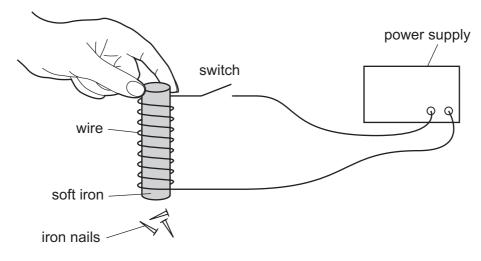
(a) (i) Name the method of thermal energy transfer this experiment demonstrates.

[1] (ii) Explain how the candle makes the smoke rise up the right hand tube. [3]

	***	ww.xtrapapers.
	10	No.
5 ⊦	Hydrogen has been described as 'a clean fuel which produces no pollution'.	TOCAL For
(a) Write a balanced equation for the burning of hydrogen in air.	TAN BARACAMBRID
(b) State why the burning of hydrogen is an oxidation reaction.	
		[1]
(c) Explain why the burning of hydrogen does not produce pollution.	
		[1]
(d) Give one disadvantage of using hydrogen as a fuel instead of petrol.	
		[4]
		[1]

[1]

			May Wat	rapa	pers.com
			12		
7	Chl	orine	e is a member of Group VII of the Periodic Table.	Can	For
	(a)	Use	e the electron configuration of chlorine to explain why it is in Group VII.	11	high
		•••••		[1]	For iner's
	(b)	Ch	orine is a gas at room temperature.		
		Na	me another element in Group VII that is a gas at room temperature.		
		•••••		[1]	
	(c)	Na	me an element in Group VII that is less reactive than chlorine.		
		•••••		[1]	
	(d)	(i)	Name the compound formed when chlorine reacts with sodium.		
				[1]	
		(ii)	Name the type of bonding in this compound.		
				[1]	
	(e)	Na	me a metal in the same period as chlorine.		
		•••••		[1]	

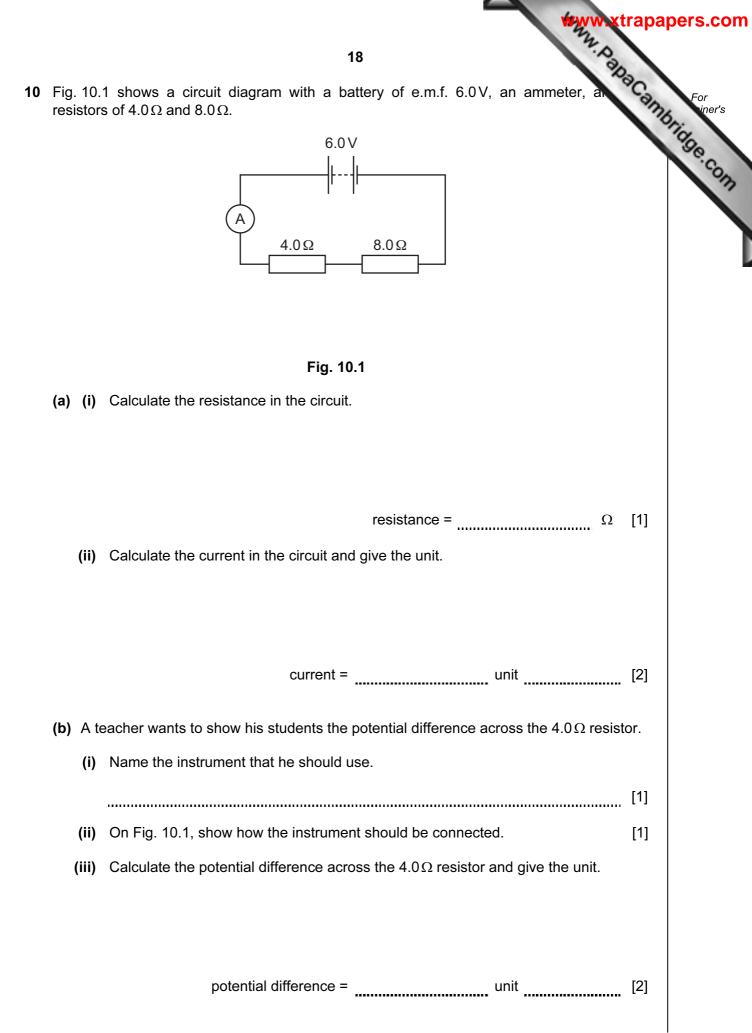

Please turn over for Question 8.

- upply. 14 Fig. 8.1a shows a long conducting wire connected to a switch and power supply. 8 plotting compass is placed near the wire. power supply power supply switch S switch S G φ G φ compass × compass Fig. 8.1a Fig. 8.1b Switch S is closed and the plotting compass needle moves to the position shown in Fig. 8.1b.
 - (a) State the conclusion that can be made from this experiment.

 [1]

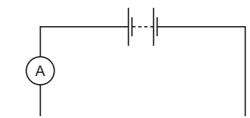
(b) A student takes a similar wire and wraps it around a cylindrical piece of soft id connects it to a switch and a power supply.

f soft io She holds the soft iron above some light iron nails which are on the work bench, as shown in Fig. 8.2.


(i) State what the student observes when the switch is closed. Give a reason for your answer.

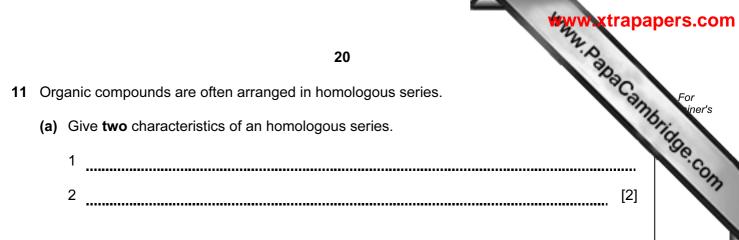
	observation
	reason
	[2]
(ii)	State what the student observes when the switch is opened again. Give a reason for your answer.
	observation
	reason
	[2]
(iii)	She replaces the soft iron with a steel cylinder of the same size. Describe what she observes when she
	closes the switch,
	opens the switch.
	[2]

		VSWW Xt	rapapers.com
		16 ⁴⁴ . Par	
9	(a)	The treatment of water to make it safe for domestic use involves two main steps.	For For
		Name these steps.	ibrid.
		step 1	Cambridge Com
		step 2	[2]
	(b)	Anhydrous copper(II) sulfate can be used to test for the presence of water. Describe the change that shows water is present.	
			[1]
	(c)	Describe how you could show that a liquid is pure water.	
			[2]


Please turn over for Question 10.

© UCLES 2013

(i) Complete Fig. 10.2 to show this circuit.



(ii) State how the current from the battery in Fig. 10.2 compares with the current from the battery in Fig. 10.1.

Explain your answer.

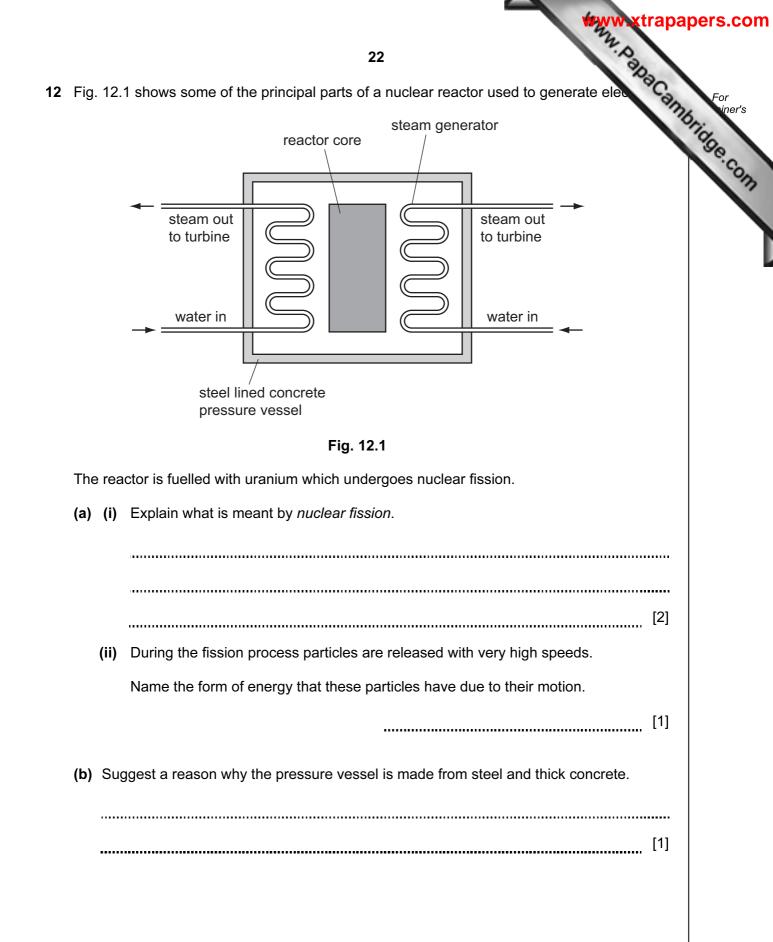
[2]

For iner's

(b) The alkanes are an homologous series.

Complete Table 11.1.

	1	
alkane	molecular formula	structural formula
methane		Н Н—С—Н Н
ethane	C ₂ H ₆	
propane		H H H HCCH H H H


Table 11.1

[3]

(c) State one use of methane.

[1]

		www.xtrapa	pers.com
		21 e alkenes are another homologous series.	
(d)	The	e alkenes are another homologous series.	For
	(i)		hidde co
			"Com
		[2]	
	(ii)	Describe a chemical test to show that a compound is an alkene rather than an alkane.	
		test	
		result [2]	

answer [1] (b) Show, by calculation, that potassium phosphate contains more than 50% potassium by mass. [relative atomic masses, *A*_r: K, 39; O, 16; P, 31;] Write your working in the box.

[3]

0		4 Helium	20 Neon	40 Argon	84 Krypton Krypton	131 Ke Xenon	Radon		175 Lu Lutetium	ricium internet	abaCambrio
		≝ ┸ [∞]	9	18	36	54	86		7	m 103	abric
	⋝		a Fluorine	35.5 C 1 Chlorine	80 Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobeliur 102	
	⋝		a Oxygen 6	32 32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Thulium 69	Mendelevium 101	
	>		14 Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er 68	Fermium 100	
	≥		Carbon C 12	28 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead		165 Holmium 67	Einsteinium 99	(r.t.p.).
	≡		B ^{oron} 1	27 27 Auminium 13	70 Ga 31	115 Ln Indium	204 T 1 ^{Thallium}		162 Dysprosium 66	Cf Californium 98	pressure
					65 Zn 30 ^{Zinc}	112 Cadmium 48	201 Hg ^{Mercury} 80		159 Tb ^{Terbium} 65	BK Berkelium 97	ature and
					64 Copper 29	108 Ag Silver	197 Au Gold		157 Gd Gadolinium 64	Currium OG	n temper
dbo					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu 63	Americium 95	n³ at roor
eroup					59 CO ^{Cobalt}	103 Rh Rhodium 45	192 Ir Iridium		150 Sm samarium 62	Plutonium 94	s is 24 dr
		¹ Hydrogen			56 Fe Iron	101 Ru thenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	of any ga
			_		55 Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 U ranium 92	ine mole
					52 Cr Chromium 24	96 Mo lybdenum 42	184 V 74		141 Pr Praseodymium 59	Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Cerium 58	232 Thorium 90	The v
					48 Titanium 22	91 Zr Zirconium 40	178 Hafinium 72		1	mic mass Ibol nic) number	
					45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89 †	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Beryllium	24 Ng Magnesium 12	40 Ca ^{Calcium}	88 Sr Strontium 38	137 Ba ^{Barium} 56	226 Rad 88	*58-71 Lanthanoid series 190-103 Actinoid series	p A A A A A A A A A A A A A A A A A A A	
	_		7 Lithium	23 23 Sodium	39 Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	3-71 Le)-103 A	ه ۲	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.