Cambridge IGCSE ${ }^{\text {TM }}$

PHYSICS

0625/42
Paper 4 Extended Theory
October/November 2020
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.

3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance
For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

PUBLISHED

NOTES ABOUT MARK SCHEME SYMBOLS AND OTHER MATTERS

B marks	are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.
M marks	are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
C marks	are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.
A marks	A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored. A marks are commonly awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are awarded. However, an A mark following an M mark is a dependent mark and is only awarded if the M mark has been awarded.
Brackets ()	Brackets around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. $10(\mathrm{~J})$ means that the mark is scored for 10 , regardless of the unit given. However, if a word in brackets is replaced with another word that is clearly wrong then the mark should not be awarded.
Underlining	Underlining indicates that this must be seen in the answer offered, or something very similar.
OR / or	This indicates alternative answers, any one of which is satisfactory for scoring the marks.
eeoo.	This means 'each error or omission'.
owtte.	This means 'or words to that effect'.
Ignore	This indicates that something which is not correct or irrelevant i.e. it is not a contradiction (CON) is to be disregarded and does not incur a penalty.
Spelling	Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection / refraction / diffraction or thermistor / transistor / transformer.

PUBLISHED

Not/NOT This indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate, i.e. right plus wrong penalty applies.

Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working. Annotate with U.
For more than one unit error in a question, annotate UU to indicate an error which has not been penalised.
Unless listed here or stated in the mark scheme for the question, do not accept derived units e.g. $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ for N is NOT acceptable.
The following are acceptable alternatives: Nm for $\mathrm{J}^{\mathrm{Js}} \mathrm{Js}^{-1}$ or Nms^{-1} for $\mathrm{W}, \mathrm{Nm}^{-2}$ for Pa , Ns and $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ are both acceptable for both momentum and impulse.
Beware: J NOT acceptable for moments.
Condone wrong use of upper and lower case symbols, e.g. pA for Pa.
Arithmetic errors If the only error in arriving at a final answer is clearly an arithmetic one, then the mark awarded will be one mark lower than the maximum mark.
Regard a power-of-ten error as an arithmetic error unless otherwise specified in the mark scheme. Annotate with POT. Do not penalise the same POT error more than once. Annotate POT POT. However, if the power-of-ten error is due to the wrong omission or inclusion of $g(=10 \mathrm{~N} / \mathrm{kg})$ this rule does not apply.
The use of a wrong SI prefix in the final answer is counted as a power-of-ten error rather than a unit error.
Transcription errors If the only error in arriving at a final answer is because previously calculated data has clearly been misread, but used correctly, then for that part question the mark will be one less than the maximum mark.

Fractions Allow these only where specified in the mark scheme; they are a form of sig. fig. error; annotate with SF. Consequently, when a sig. fig. error and a fraction is used in the same question, the second answer may still be awarded full marks.

Crossed out Work which has been crossed out and not replaced but can easily be read, should be marked as if it had not been crossed out. Look to see if it has been replaced on a blank page or another part of the same page.

Use of NR (\# or / key on the keyboard). Use this if the answer space for a question is completely blank or contains no readable words, figures or symbols.

RM Assessor 3
Please note that 0625 papers are now marked using RM assessor3. Videos and documents are available by using the
Help icon in the top right hand cornet when logged in or from the RM support site. Familiarisation mode is also available on RM Assessor 3. The tool bar is now located on the left of the screen and you drag items used frequently to the right hand side of the tool bar. Note - the tool bar won't be visible until you have scripts to mark rather than just browse.

PUBLISHED

RM Assessor3 annotations:

annotation	suggested use
tick	mark awarded (note the ticks are added up next to the tick annotation, check the total you enter agrees)
cross	no mark awarded
SEEN	indicates page seen
BOD	benefit of doubt given
NBOD	no benefit of doubt given comment -much easier to use than in the previous version of RM assessor
on page	
comment	emes a text box to write
$?$	error carried forward
ECF	omission mark unit penalty not applied because already applied earlier in same question
	unclear
unit penalt applied	

annotation	suggested use
wavy line (horizontal or vertical)	used to highlight a particular point
CON	contradiction
NAQ	not answered question
PD	poor diagram error in number of significant figures not penalized.
SF	powror POT pen-ten error as already applied
POT	POT POT
too vague	
TV	ignore
SC	special case

PUBLISHED

Guidance on the expression : words, symbols or numbers

Accept numbers if, in the context of the question, that number can reasonably be a value for the quantity in the equation/formula.
Accept alternative symbols that can reasonably represent the quantity in the equation but not if there is confusion with another quantity that is represented by that symbol in the syllabus e.g. Q is often acceptable for thermal energy but not if, as has happened, if there is confusion with charge.

Linking pages to other questions RM Assessor3

It is not unusual for candidates to write all or parts of answers to question outside the normal marking zone for that question. It is absolutely vital that such work is marked. Examiners need to follow up cases where candidates reach the end of the answer zone in the middle of a sentence or cross out all the work that fills the answer zone, or use an asterisk or arrowed line or otherwise to suggest that an answer is completed or replaced elsewhere on the paper.

If all the extra work is clearly visible in the next marking zone there is no need to link it.
In all other cases where there is extra work that cannot be seen in the normal marking zone, examiners will need to use full screen mode to find the page which needs linking to a particular question and click 'link to question'. The page is then automatically linked to that question and will appear below the zone for that question when marked.

Blank Pages and Blank AOs

There are no blank pages.
Annotate with 'seen' from toolbar that you have seen any blank Additional Objects.

Annotation

To increase marking transparency, reduce the number of enquiries about results and assist team leaders, the following is mandatory :

- For all questions with two or more marks, examiners should tick to indicate where each credit is awarded.
- For questions with one mark, examiners do not need to annotate the script to indicate that credit is awarded.
- Any text annotation or annotation in a comment box should never contain -1 or allow a possible misinterpretation that negative marking was applied.

Normally place the ticks close to where the mark is scored.

Question	Answer		Guidance
			Any correct final answer scores full marks even if reached by wrong Physics.
			Any numerically correct final answer with a unit error scores (full marks - 1) even if reached by wrong Physics. Annotate U.

www.xtrapapers.com
PUBLISHED

Question	Answer	Marks
1(a)(i)	X near (30,60)	B1
1(a)(ii)	Y AND Z near any horizontal section of graph	B1
1(b)	any two from: - weight OR force of / due to gravity acts down - (force of / due to) air resistance / drag / friction acts up / opposes motion - initially / up to 10 s: resultant force is downward OR downward force is greater than upward force - resultant force causes acceleration - air resistance increases as speed increases / she accelerates	B1
	any two from: - acceleration (down) initially / for first 10 s - acceleration decreases as air resistance increases / resultant force decreases - zero acceleration / constant speed / terminal velocity reached when upwards force = downwards force OR when no / zero resultant OR when forces balanced OR when downward force = air resistance - terminal velocity / constant speed reached after (about) 10 s OR at $60 \mathrm{~m} / \mathrm{s}$	B2
1(c)	(average speed $=$) \{initial speed + final speed\} / 2 words, symbols or numbers OR (average speed $=$) distance (from area)/time words, symbols or numbers	C1
	$\begin{aligned} & \text { (average speed }=40 / 2=) 20 \mathrm{~m} / \mathrm{s} \\ & \text { OR (av speed }=80 / 4=\text {) } 20 \mathrm{~m} / \mathrm{s} \end{aligned}$	A1

Question	Answer	Marks
2(a)	force \times perpendicular distance (from point)	B1
2(b)(i)	0.80 N	B1
2(b)(ii)	$($ moment $=$ force \times distance $=) 0.8 \times 0.25$	C1
	(moment $=) 0.20 \mathrm{~N} \mathrm{~m}$	A1
2(b)(iii)	same value as (ii) with correct unit	B1
2(b)(iv)	$F \times 0.75=0.20$ in any form $\operatorname{OR}(F=0.2 / 0.75$	C1
	$(F=0.2 / 0.75=) 0.27 \mathrm{~N}$	A1
2(c)	```(perpendicular) distance (from pivot) of F decreases / is less (than 0.75 m) OR (perpendicular) distance (from pivot) of W increases / is more (than 0.75 m)```	M1
	(so) increased / greater (force F) (needed for greater moment)	A1

Question	Answer	Marks
3	(output) $P=V I$ OR $E=V I t$ OR $E=P t$ in any form words, symbols or numbers OR $(P=) V I$ OR $(P=) 240 \times 9$ OR $(P=) 2160(W)$ OR $(E=) 240 \times 9 \times 60=129600(\mathrm{~J})$	C1
	$\begin{aligned} & \text { (rate of energy input }=720000 / 60=\text {) } 12000(\mathrm{~J} / \mathrm{s}) \\ & \text { OR energy input }=720000(\mathrm{~J}) \end{aligned}$	C1
	(efficiency $=$) $(100 \times$) output power / input power OR (100 \times) output energy / input energy words, symbols or numbers	C1
	(efficiency =) $100 \times\{2160 / 12000\}$	C1
	(efficiency $=$) 18 (\%)	A1

Question	Answer	Marks
$4(\mathrm{a})$	thermocouple	B1
$4(\mathrm{~b})$	$(\Delta T=)\{1.7 / 5.4\} \times 100$	C1
	$(T=31+20=) 51^{\circ} \mathrm{C}$	A1
4 4(c)	any application involving high(er) /low(er) temperatures OR rapidly changing temperatures OR on vibrating machinery OR remote sensing OR data logging OR small areas/masses	B1

Question	Answer	Marks
5(a)(i)	(thermal) energy (needed) to change state	M1
	of unit mass/1 kg (of material) NOT per ${ }^{\circ} \mathrm{C}$	A1
5(a)(ii)	molecules must be separated OR (intermolecular) bonds must be broken / overcome	B1
	work done (against bonds) OR energy is required/ needed NOT increase of KE / speed	B1
5(b)	$E=m l$ in any form or ($l=$) $E \div m$ words, symbols or numbers	C1
	($m=$) 1.5 OR 1500 OR OR 3.8-2.3 OR 3800-2300	C1
	$\left(l=1.26 \times 10^{6} \div 1.5=8.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}\right.$	A1
5(c)	insulate OR apply lagging / insulation (to container)	B1
	reduction of thermal energy / heat losses	B1

www.xtrapapers.com

Question	Answer	Marks
6(a)(i)	1 amplitude marked correctly	B1
	2 wavelength marked correctly	B1
6(a)(ii)	trough labelled T	B1
6(b)	$f=15 / 60(=0.25)$	B1
	$v=f \lambda$ in any form $\mathrm{OR}(v=) f \lambda$ words, symbols or numbers	B1
	$(v=) 0.08 \times 0.25(=0.02 \mathrm{~m} / \mathrm{s})$ OR $0.25 \times 8(=2.0 \mathrm{~cm} / \mathrm{s})$	B1
	Alternative route 1 : $v=d \div t$ words, symbols or numbers	(B1)
	distance moved in one minute $=15 \times 8$ OR 120 OR 15×0.08 OR 1.2	(B1)
	$(v=) 120 / 60(=0.02 \mathrm{~m} / \mathrm{s})$ OR $120 \div 60$ OR $15 \times 0.08 \div 60$ OR $1.2 \div 60$	(B1)
	Alternative route 2 : time for 1 oscillation $=4 \mathrm{~s}$	(B1)
	distance moved in $4 \mathrm{~s}=8 \mathrm{~cm}$	(B1)
	so speed $=8 \div 4=2 \mathrm{~cm} / \mathrm{s}$	(B1)
6(c)	oscillation at right angles to the direction of propagation / travel / energy transfer (of the wave)	B1
	oscillation parallel to / in the direction of propagation/travel/energy transfer (of the wave) OR has compressions and rarefactions OR needs/must have a medium	B1

www.xtrapapers.com
PUBLISHED

Question	Answer	Marks
7(a)(i)	total internal reflection OR T.I.R.	B1
7(a)(ii)	$\sin C=1 \div n$ in any form OR $(C=) \sin ^{-1}\{1 \div 1.4\}$	C1
	$\left(C=\sin ^{-1}\{1 \div 1.4\}=\sin ^{-1} 0.714=46^{\circ}\right.$	A1
7(b)	description of fibre passing to site to be examined/treated	B1
	light passes down fibre (to site) AND (image) returns (to sensor / observer) OR alternative use to endoscopy	B1
	extra detail, e.g. laser light source, illuminated organ, image, camera/type of sensor	B1
7(c)	any mention of frequency	B1
	(all of light) same / single / one frequency	B1

Question	Answer	Marks
8(a)	conditions (outdoors) may be damp / wet	C1
	water conducts (electricity) OR clear statement of need for waterproof/outdoor specification (components)	A1
8(b)	protects components / appliances / circuit / wires / user / mains supply prevents electrical supply overheating / fires / electrocution/shocks	B1
	excess current/power in circuit/ wires OR fuse melts / blows OR circuit breaker opens	B1

Question	Answer	Marks
9(a)(i)	C pointing horizontally to right	B1
	B AND D pointing horizontally to left	B1
9(a)(ii)	S on left AND N on right	B1
9(b)	any one of the following methods:	
	1 heat magnet	C1
	to high temperature / red hot	A1
	2 hammer the magnet	(B1)
	repeatedly / in E-W direction	(B1)
	3 (place) magnet in a coil/ solenoid carrying a.c.	(M1)
	remove magnet from coil OR decrease current (slowly) to zero	(A1)
9(c)(i)	at least 3 concentric circles	B1
	closer together near the wire AND clockwise arrow	B1
9(c)(ii)	arrows OR field reverses / is in opposite direction	B1

Question	Answer	Marks
10(a)(i)	recognisable ammeter in gap AB AND straight lines in CD AND EF	B1
10(a)(ii)	recognisable voltmeter across 4Ω	B1
	correct voltmeter symbol used	B1
10(a)(iii)	$V=I R$ in any form or ($V=$) $I R$ words, symbols or numbers	C1
	$\left(V_{2 \Omega}=2 \times 2.5=\right) 5 \mathrm{~V}$	C1
	$\left(I_{4 \Omega}=5 \div 4=\right) 1.3 \mathrm{~A}$ must be clear that I refers to 4Ω OR calculates $R_{\mathrm{p}}=1.33 \Omega$ OR $4 \div 3 \Omega$	C1
	$\begin{aligned} & \left(I_{6 \Omega}=2.5+1.3=\right) 3.8 \mathrm{~A} \\ & \text { OR }\left(I_{6 \Omega}=5 \div 1.33=\right) 3.8 \mathrm{~A} \end{aligned}$	A1
	Alternative route for first 3 mps	
	I proportional to $1 \div R$ OR $I_{2 \Omega} \times R_{2 \Omega}=I_{4 \Omega} \times R_{4 \Omega}$	C1
	$I_{4 \Omega}=I_{2 \Omega} \div 2$	C1
	$\left(I_{4 \Omega}=I_{2 \Omega} \div 2=2.5 \div 2=\right) 1.3 \mathrm{~A}$	C1
	Alternative route by potential divider	
	$V=I R$ in any form or ($V=$) IR words, symbols or numbers	C1
	$\left(\mathrm{V}_{2 \Omega}=2 \times 2.5=\right) 5 \mathrm{~V}$	C1
	$\mathrm{V}_{\mathrm{T}}=7.33 \times 5 \div 1.33(=27.51 \mathrm{~V})$	C1
	$\left(I_{6,2}=27.51 \div 7.33=\right) 3.8 \mathrm{~A}$	A1

www.xtrapapers.com

Question	Answer	Marks
$10(\mathrm{~b})$	any sort of triangle symbol pointing to left in EF	B1
	a wire in CD	B1

Question	Answer	Marks
11(a)	nuclear fission - nucleus / atom splits (into two) AND nuclear fusion - two nuclei / atoms join together	B1
	One from - \{nuclear fission -large(r) mass (number) OR heavy nuclei / atoms involved OR neutrons involved / emitted\} AND nuclear fusion - small(er) mass (number) OR light nuclei / atoms involved OR no neutrons - fission in a nuclear reactor AND fusion in Sun / stars - fission produces very radioactive / long lasting waste - fission makes lighter new elements AND fusion makes heavier new elements - fission at normal p/T AND fusion at high p/T - fusion produces more energy (than fission)	B1
11(b)(i)	longer half-life - radioactive substance active in body for a long time	B1
	shorter half-life - might be insufficient time for investigation OR it takes time / hours for the tracer to spread round the body	B1
11(b)(ii)	proton numbers balance for equation expected answer: $42 \mathrm{Mo} \rightarrow{ }_{43} \mathrm{Tc}+{ }_{-1} \beta$	B1
	all nucleon numbers correct	B1
	correct proton and nucleon number for β-particle	B1
11(b)(iii)	any suitable use, e.g. sterilisation of equipment, treatment of cancer, gamma for diagnosis, radiotherapy NOT any link to X-rays	B1

