Cambridge IGCSE ${ }^{\text {TM }}$

PHYSICAL SCIENCE

0652/21
Paper 2 Multiple Choice (Extended)
October/November 2020
45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- \quad The total mark for this paper is 40 .
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Which diagram represents the arrangement of particles in a liquid?
A

B

C

D

2 A bottle of a solid is labelled as shown.

CITRIC ACID (anhydrous)

melting point: $153^{\circ} \mathrm{C}$

The melting point of a sample from the bottle is measured.
The sample melts over a temperature range from $140^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
Which statement explains this observation?
A The sample contains a mixture of citric acid and other solids.
B The sample is too large.
C The sample has a pH less than 7 .
D The sample is too small.

3 Which statement describes a compound?
A It is a mixture of two or more elements.
B It is a substance containing two or more elements chemically combined.
C It is a substance that can be easily separated by physical means.
D It is a substance that cannot be broken down by chemical means.

4 Four different atoms are represented by the symbols shown.
${ }_{11}^{23} \mathrm{~W}$
${ }_{12}^{24} \mathrm{X}$
${ }_{12}^{26} \mathrm{Y}$
${ }_{13}^{26} Z$

Which statement about these atoms is correct?
A Elements W and X have the same properties because they have the same number of neutrons.

B Elements W and Z have the same properties because they are in the same period of the Periodic Table.

C Elements X and Y have the same properties because they have the same number of outer shell electrons.

D Elements Y and Z have the same properties because they have the same number of electrons.

5 Which diagram represents the structure of an ionic compound?
A

B

C

D

6 Which molecules both contain double covalent bonds?
A $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{3} \mathrm{OH}$
B $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO_{2}
C H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$
D H_{2} and $\mathrm{CH}_{3} \mathrm{OH}$

7 The formula of aluminium sulfate is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
Which row shows the number of atoms of each element in aluminium sulfate?

	$\mathrm{A} l$	S	O
A	2	1	4
B	2	1	12
C	2	3	4
D	2	3	12

8 Ethyl ethanoate has the formula $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$.
What is the relative molecular mass M_{r} of this compound?
A 48
B 72
C 88
D 124

9 Increasing the temperature of a reaction mixture increases the rate of the reaction.
Which statement explains the effect of increasing the temperature?
A When the temperature is increased the activation energy decreases.
B When the temperature is increased the particles get bigger and so collide more frequently.
C When the temperature is increased the particles move faster so collisions become more frequent.

D When the temperature is increased the substances reacting become more concentrated.

10 Word equations for two reactions are shown.

$$
\begin{aligned}
& \text { zinc oxide }+ \text { carbon } \rightarrow \text { zinc }+ \text { carbon monoxide } \\
& \text { iron }+ \text { copper oxide } \rightarrow \text { copper }+ \text { iron oxide }
\end{aligned}
$$

Which statement about the two reactions is correct?
A Carbon and copper oxide have been oxidised.
B Carbon and iron have been reduced.
C Zinc oxide and copper oxide have been oxidised.
D Zinc oxide and copper oxide have been reduced.

11 Wasp stings contain an alkali.
The pH values of some substances are shown.

substance	pH value
saliva	7.4
lime	12.4
salt solution	7.0
vinegar	3.5

Which substance could be used to neutralise a wasp sting?
A lime
B saliva
C salt solution
D vinegar

12 Zinc oxide reacts separately with both dilute hydrochloric acid and aqueous sodium hydroxide to form solutions.

Manganese oxide reacts with dilute hydrochloric acid to form a solution, but does not react with aqueous sodium hydroxide.

Which row describes zinc oxide and manganese oxide?

	zinc oxide	manganese oxide
A	amphoteric	acidic
B	amphoteric	basic
C	neutral	acidic
D	neutral	basic

13 Which row describes the trends from left to right across a period of the Periodic Table?

	number of outer shell electrons	character of the element
A	decreases	become less metallic
B	decreases	become more metallic
C	increases	become less metallic
D	increases	become more metallic

14 The elements in Group VII of the Periodic Table are known as the halogens.
Which statement about the trends shown by the halogens is correct?
A The ability to displace halide ions from solutions decreases down the group.
B The atomic radius decreases down the group.
C The colours of the elements get lighter down the group.
D The melting points of the elements decrease down the group.

15 Iron is produced from iron oxide using a redox reaction.
The equation for the reaction is shown.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

Which statement about this reaction is correct?
A Carbon dioxide is oxidised.
B Carbon monoxide is reduced.
C Iron is oxidised.
D Iron oxide is reduced.

16 Which of the statements about water are correct?
1 Water is used as a solvent.
2 Water is used to prevent iron from rusting.
3 Water is a compound that contains two parts of oxygen to one part of hydrogen.
A 1 only
B 2 only
C 1 and 3
D 2 and 3

17 Nitrogen oxides are produced in a car engine.
Which type of reaction catalytically removes nitrogen oxides from the exhaust fumes?
A combustion
B oxidation
C reduction
D thermal decomposition

18 Which statement explains why the members of a homologous series have similar chemical properties?

A They are atoms of the same element with the same outer electron arrangement.
B They are compounds with the same functional group.
C They are compounds with the same molecular formula.
D They are elements with the same outer electrons.

19 One member of the alkane homologous series is butane which is used as a fuel.
What are the products of combustion when butane is burned in excess air?
A carbon and water
B carbon dioxide and hydrogen
C carbon dioxide and water
D carbon monoxide and water

20 Ethanol is made by fermentation.
Which row shows the conditions used in this process?

	temperature $/{ }^{\circ} \mathrm{C}$	catalyst	pressure /atmospheres
A	30	phosphoric acid	1
B	30	yeast	1
C	300	phosphoric acid	65
D	300	yeast	65

21 A micrometer screw gauge can be used to measure a distance.
Which is the most appropriate distance to measure using this instrument?
A the diameter of a 500 ml beaker
B the length of a laboratory
C the length of a mobile phone (cell phone)
D the thickness of a sheet of card

22 The distance of an object above the surface of a planet is gradually increased. The value of the gravitational field strength decreases as the distance increases.

What happens to the mass and what happens to the weight of the object as the distance increases?

	mass	weight
A	decreases	decreases
B	decreases	stays the same
C	stays the same	decreases
D	stays the same	stays the same

23 The diagram shows a solid cube of metal. Each side has a length of 2.0 cm . The mass of the cube is 72 g .

What is the density of the metal?
A $9.0 \mathrm{~g} / \mathrm{cm}^{3}$
B $18 \mathrm{~g} / \mathrm{cm}^{3}$
C $288 \mathrm{~g} / \mathrm{cm}^{3}$
D $576 \mathrm{~g} / \mathrm{cm}^{3}$

24 The diagram shows the extension-load graph for a spring.
Which labelled point is the limit of proportionality?

25 An object of mass 5.0 kg moves at a constant speed to the right in a straight line.
A resultant force of 25 N to the left starts to act on the object.
What happens to the object immediately after the force is applied?
A Its speed decreases at $0.20 \mathrm{~m} / \mathrm{s}^{2}$.
B Its speed decreases at $5.0 \mathrm{~m} / \mathrm{s}^{2}$.
C Its speed increases at $0.20 \mathrm{~m} / \mathrm{s}^{2}$.
D Its speed increases at $5.0 \mathrm{~m} / \mathrm{s}^{2}$.

26 The diagram shows a uniform metre rule that is in equilibrium.
It is supported by a pivot at the 50 cm mark and by an upward force F at the 20 cm mark. A 60 N weight is suspended from the rule at the 30 cm mark.

A force R acts upwards at the pivot.
The weight of the rule can be ignored.

What are the values F and R ?

	F / N	R / N
A	40	10
B	40	20
C	90	36
D	90	60

27 A ball of mass 0.25 kg has 18 J of kinetic energy.
What is the speed of the ball?
A $3.0 \mathrm{~m} / \mathrm{s}$
B $7.2 \mathrm{~m} / \mathrm{s}$
C $9.0 \mathrm{~m} / \mathrm{s}$
D $12 \mathrm{~m} / \mathrm{s}$

28 A toy car without a motor is pushed, then follows the looped track shown.
At which labelled point on the track is the kinetic energy (energy of motion) of the car decreasing and the potential energy (energy of position) increasing?

start

29 A student measures his power output by lifting a load of weight W through a vertical height h. In time t, he lifts the load n times.

The student changes one of these variables to increase his power output.
Which change produces this increase?
A decreasing h
B decreasing n
C decreasing t
D decreasing W

30 A liquid-in-glass thermometer P can measure temperatures between $-10^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$. Its scale is 30 cm long.

A second liquid-in-glass thermometer Q can measure temperatures between $30^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$. Its scale is 10 cm long.

Which thermometer has the greater range and which is the more sensitive?

	thermometer with greater range	thermometer that is more sensitive
A	P	P
B	P	Q
C	Q	P
D	Q	Q

31 The diagram represents a water wave on the surface of a pond.

The frequency of the wave is 3.0 Hz .
What is the speed of the wave?
A $0.75 \mathrm{~cm} / \mathrm{s}$
B $\quad 1.5 \mathrm{~cm} / \mathrm{s}$
C $\quad 12 \mathrm{~cm} / \mathrm{s}$
D $18 \mathrm{~cm} / \mathrm{s}$

32 The diagram shows light incident on a glass block.
Which labelled arrow shows the path of the light after it has passed through the block?

33 What is the approximate range of frequencies of sound that can be heard by the human ear?
A 2 Hz to 2000 Hz
B 2 kHz to 2000 kHz
C 20 Hz to 20000 Hz
D 20 kHz to 20000 kHz

34 A strong permanent magnet is placed close to an iron block, as shown in the diagram.

Magnetic poles are induced in the iron block.
What is the arrangement of the induced poles?
A

B

C

D
S
N

35 Two plastic rods are each rubbed with a cloth.
The rods are brought close to each other and they move apart.
Which statement explains this?
A Like charges repel.
B Like poles repel.
C Unlike charges repel.
D Unlike poles repel.

36 The electromotive force (e.m.f.) of a battery is 6.0 V .
Which statement is correct?
A The battery supplies 1.0 J of energy in driving 6.0 C of charge around a complete circuit.
B The battery supplies 6.0 J of energy in driving 1.0 C of charge around a complete circuit.
C The battery supplies 1.0 W of power in driving 6.0 C of charge around a complete circuit.
D The battery supplies 6.0 W of power in driving 1.0 C of charge around a complete circuit.

37 Overheating of a cable in an electric circuit is a safety hazard.
How can overheating of the cable be prevented?
A Do not switch off the circuit with damp hands.
B Make sure that the current does not become too large.
C Use thicker insulation on the cable.
D Use a thinner cable.

38 The diagram represents the nucleus of an atom.

Which diagram represents the nucleus of a different isotope of this atom?
A

B

C

D

39 The emissions from a radioactive source pass through a sheet of lead that is 10 mm thick.
Which type of radiation is emitted from the source and how is it affected by an electric field?

	type of emission	effect of electric field
A	α	deflected from positive to negative
B	α	no deflection
C	γ	deflected from positive to negative no deflection
D	γ	

40 A radioactive nucleus emits a β-particle.
What happens to the nucleus?
A Its nucleon number decreases.
B Its nucleon number stays the same.
C Its proton number decreases.
D Its proton number stays the same.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.
The Periodic Table of Elements

$\begin{gathered} 57 \\ \mathrm{La} \\ \substack{\text { lantranum } \\ 139} \end{gathered}$	$\begin{gathered} 58 \\ \text { cerium } \\ \text { ce } \\ \hline 1040 \end{gathered}$	59 Pr praseodymum rop	$\begin{gathered} 60 \\ \begin{array}{c} \text { nd } \\ \text { neodymium } \\ 144 \end{array} \end{gathered}$	$\begin{gathered} \mathrm{P}^{61} \\ \text { promentium } \end{gathered}$		$\begin{gathered} 63 \\ \begin{array}{c} 6 u \\ \text { europium } \\ 152 \\ \text { nen } \end{array} \end{gathered}$		$\begin{gathered} 65 \\ \left.\hline \begin{array}{c} 65 \\ \text { tetbium } \\ 159 \\ \hline \end{array}\right] \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { dysposium } \\ 163 \end{gathered}$	$\begin{gathered} 67 \\ \begin{array}{c} 67 \\ \text { nomium } \\ \text { 165 } \end{array} \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ \substack{\text { evium } \\ 167} \end{gathered}$	$\begin{gathered} 69 \\ \hline \text { Thulium } \\ \text { them } \\ \hline 169 \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ \substack{\text { y tetebium } \\ 173} \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu}_{\substack{\text { unteium } \\ 175}} \end{gathered}$
89	90	91	92	${ }^{93}$	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Acmm	${ }_{232}$	${ }_{2}$	${ }_{238}$										desium	

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

