Cambridge IGCSE[™]

PHYSICAL SCIENCE 0652/22

Paper 2 Multiple Choice (Extended)

October/November 2020

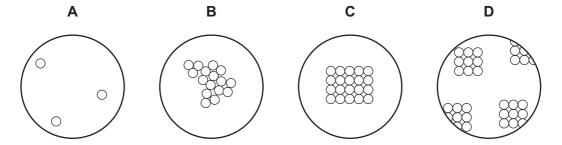
45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)


INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Which diagram represents the arrangement of particles in a liquid?

2 A bottle of a solid is labelled as shown.

CITRIC ACID (anhydrous)
melting point: 153°C

The melting point of a sample from the bottle is measured.

The sample melts over a temperature range from 140 °C to 150 °C.

Which statement explains this observation?

- A The sample contains a mixture of citric acid and other solids.
- **B** The sample is too large.
- **C** The sample has a pH less than 7.
- **D** The sample is too small.
- 3 Which statement describes a compound?
 - A It is a mixture of two or more elements.
 - **B** It is a substance containing two or more elements chemically combined.
 - **C** It is a substance that can be easily separated by physical means.
 - **D** It is a substance that cannot be broken down by chemical means.
- **4** Which molecule does **not** contain an atom which shares more than two electrons with one other atom?

 \mathbf{A} C_2H_4

B CH₃OH

 \mathbf{C} CO_2

 $D N_2$

5	Whi	ch stateme	nt explain	s why grap	hite is a	good cor	ductor o	f el	ectricity?				
	Α	It has movi	ng electro	ons.									
	В	It has movi	ng ions.										
	С	It has stron	g bonds	within its la	yers of a	itoms.							
	D	It has weak	bonds b	etween its	layers of	atoms.							
•	Б.	, .				·	., .						
6	Pota	otassium nitride is an ionic compound. The charges on its ions are shown.											
	K^{+} N^{3-}												
	Wha	at is the forr	nula of po	otassium ni	tride?								
	Α	KN	В	K_2N	С	K ₃ N		D	KN ₃				
7	The	formula of	aluminiur	n sulfata is	A1.(SO.	١.							
'					`	, -							
	Whi	ch row shov	ws the nu	mber of ato	oms of e	ach eleme	ent in alu	ımiı	nium sulfate?				
		Al	S	0									
	Α	2	1	4									
	В	2	1	12									
	С	2	3	4									
	D	2	3	12									
8	Ethy	/l ethanoate	has the	formula CF	$I_3CO_2C_2$	H ₅ .							
	Wha	at is the rela	itive mole	cular mass	$M_{\rm r}$ of th	is compo	und?						
	Α	48	В	72	С	88	١	D	124				
0	Mag	un o oiu maio o	addad ta l	ovdro oblori	o ooid								
9		nesium is a											
	The	temperatur	e of the r	nixture incr	eases.								
	Whi	ch statemei	nt describ	es and exp	olains thi	s observa	ition?						
	A	The reaction the energy				•	y needed	d to	make the bonds is greater than				
	В	The reaction the energy				the energ	y releas	ed	in making bonds is greater than				
	С	The reaction the energy				•••	needed	l to	make the bonds is greater than				

energy needed to break bonds.

The reaction is exothermic because the energy released in making bonds is greater than the

10 Word equations for two reactions are shown.

zinc oxide + carbon
$$\rightarrow$$
 zinc + carbon monoxide
iron + copper oxide \rightarrow copper + iron oxide

Which statement about the two reactions is correct?

- **A** Carbon and copper oxide have been oxidised.
- **B** Carbon and iron have been reduced.
- **C** Zinc oxide and copper oxide have been oxidised.
- **D** Zinc oxide and copper oxide have been reduced.
- 11 Wasp stings contain an alkali.

The pH values of some substances are shown.

substance	pH value
saliva	7.4
lime	12.4
salt solution	7.0
vinegar	3.5

Which substance could be used to neutralise a wasp sting?

- A lime
- **B** saliva
- C salt solution
- **D** vinegar

- **12** Four methods of preparing salts are shown.
 - 1 adding an excess of an insoluble carbonate to a dilute acid and removing the excess by filtration
 - 2 adding an excess of an insoluble metal oxide to a dilute acid and removing the excess by filtration
 - 3 precipitation
 - 4 titration using an acid and a metal hydroxide

The solubilities of some lead compounds are shown.

compound	solubility
lead carbonate	insoluble
lead hydroxide	insoluble
lead oxide	insoluble
lead nitrate	soluble
lead sulfate	insoluble

Which of the methods could be used to make lead sulfate?

A 1 and 3

B 1 and 2

C 3 only

D 4 only

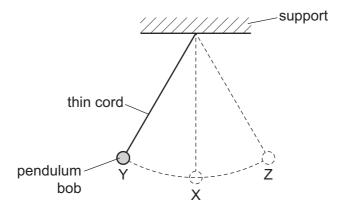
13 Elements W, X, Y and Z are all in the same period of the Periodic Table.

Which element has the fewest electrons in its outer shell?

- **A** Element W, which has the largest relative atomic mass.
- **B** Element X, which has the largest atomic number.
- **C** Element Y, which has the most metallic character.
- **D** Element Z, which forms an acidic oxide.
- 14 Chlorine, bromine and iodine are three of the elements in Group VII of the Periodic Table.

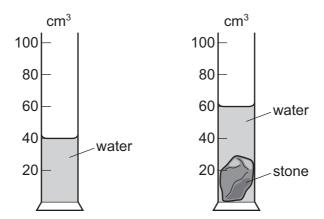
They show a trend in reactivity.

Which reaction does **not** take place when a halogen reacts with an aqueous halide ion?


- A bromine + potassium chloride → chlorine + potassium bromide
- **B** bromine + potassium iodide → iodine + potassium bromide
- **C** chlorine + potassium bromide → bromine + potassium chloride
- **D** chlorine + potassium iodide → iodine + potassium chloride

15	Wh	ich state	ment descr	ibes and expla	ains a p	property of	metals?		
	Α	Metals a	are good el	ectrical condu	ctors a	s they cont	ain a sea	of mobile e	lectrons.
	В	Metals a	are good el	ectrical condu	ctors a	s they cont	ain a sea	of mobile ic	ons.
	С	Metals a	are malleat	ole because m	etallic	bonds are s	strong.		
	D	Metals a	are malleat	ole because m	etallic	bonds are v	veak.		
40	\	د داد د داد د				40			
16	vvn			s about water		rrect?			
		1		sed as a solve					
		2		sed to preven					
		3	Water is a	compound th	at con	tains two pa	arts of oxy	gen to one	part of hydrogen.
	Α	1 only	В	2 only	С	1 and 3	D	2 and 3	
17	Nitr	rogen oxi	des are pro	oduced in a ca	r engir	ne			
			-	catalytically re			vides fron	n the exhau	st fumes?
	Α	combus		odiary nodiny 10	1110 000	introgen o	AIGCS II OI	ii tilo oxilaa	ot rumes:
	В	oxidatio							
	С	reduction							
	D		decompos	ition					
18	Wh	at is not	a characte	ristic of a hom	ologou	s series?			
	Α	consecu	utive memb	ers differ by a	CH ₂ g	roup			
	В	the sam	ne boiling p	oint					
	С	the sam	ne functiona	al group					
	D	the sam	ne general f	ormula					
40	0					::-	: حاجة حاديد	d	final .
19				ane homologo					tuei.
	Wh	at are the	e products	of combustion	when	butane is b	urned in (excess air?	
	Α	carbon	and water						
	В		dioxide and						
	С		dioxide and						
	D	carbon	monoxide a	and water					

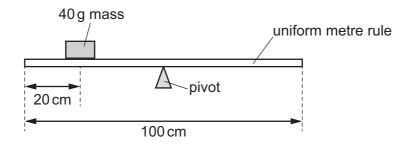
20 Alkenes are identified by reacting them with bromine.


Which type of reaction is this?

- A addition
- **B** combustion
- **C** neutralisation
- **D** polymerisation
- **21** A student determines the period of the pendulum shown in the diagram.

Which method gives the most accurate value for the period?

- A Measure the time for ten swings from Y to Z and back to Y, and divide the time by ten.
- **B** Measure the time taken to swing from Y to X and multiply the time by four.
- **C** Measure the time taken to swing from Y to Z and multiply the time by two.
- **D** Measure the time taken to swing from Y to Z and back to Y.
- **22** A stone of mass 120 g is lowered slowly into a measuring cylinder containing water. The diagrams show the measuring cylinder before and after the stone is lowered into it.



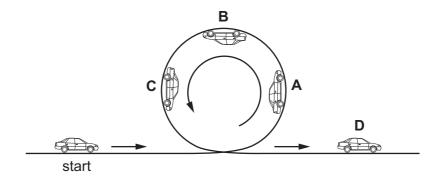
What is the density of the stone?

- \mathbf{A} 1.2 g/cm³
- **B** $2.0 \,\mathrm{g/cm^3}$
- **C** $3.0 \,\mathrm{g/cm^3}$
- \mathbf{D} 6.0 g/cm³

23 A pivot is placed under the centre of a uniform metre rule.

A 40 g mass is placed at the 20 cm mark.

A 50 g mass is placed on the rule to balance it.

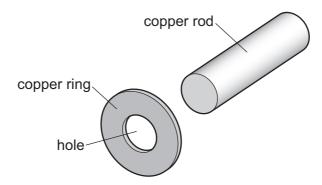

Where is the 50 g mass placed?

- A at the 16 cm mark
- B at the 24 cm mark
- C at the 66 cm mark
- **D** at the 74 cm mark
- 24 A resultant force of 4.0 N acts on an object of mass 2.0 kg. The force does 32 J of work.

What distance does the object move?

- **A** 8.0 m
- **B** 16 m
- **C** 128 m
- **D** 256 m
- **25** A toy car without a motor is pushed, then follows the looped track shown.

At which labelled point on the track is the kinetic energy (energy of motion) of the car decreasing and the potential energy (energy of position) increasing?



26 Two liquid-in-glass thermometers P and Q are both designed to measure temperatures between 0 °C and 100 °C. The lengths of their liquid columns at different temperatures are shown in the table.

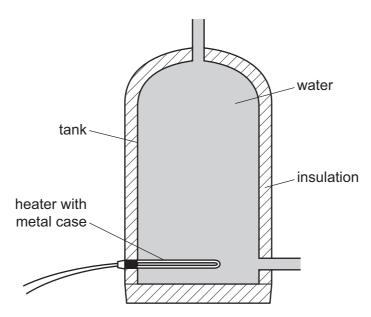
temperature/°C	length of liquid column in P/cm	length of liquid column in Q/cm
0	4.0	2.0
50	16.5	9.5
100	29.0	17.0

Which statement about the thermometers is correct?

- A P has a larger range than Q.
- **B** P is more sensitive than Q.
- C Q has a larger range than P.
- **D** Q is more sensitive than P.
- **27** The diagram shows a copper ring and a copper rod.

The diameter of the copper rod is too big to fit the rod into the hole in the ring.

What enables the rod to fit into the hole?

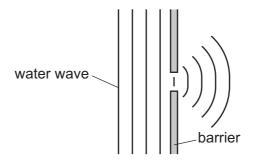

- A cooling the ring and heating the rod
- **B** cooling the rod and heating the ring
- **C** heating the rod and keeping the ring at room temperature
- **D** heating the rod and the ring to the same high temperature

28 Which row states the temperatures at which evaporation occurs and at which boiling of water occurs?

	evaporation	boiling
Α	at 100°C only	at 100 °C only
В	at 100°C only	between 0 °C to 100 °C
С	between 0 °C to 100 °C	at 100°C only
D	between 0 °C to 100 °C	between 0 °C to 100 °C

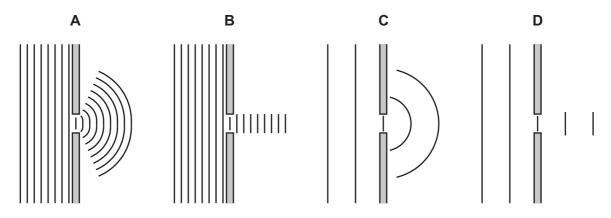
29 The diagram shows an insulated tank of water fitted with an electric heater that has a metal case.

The water is cold. The heater is not switched on.

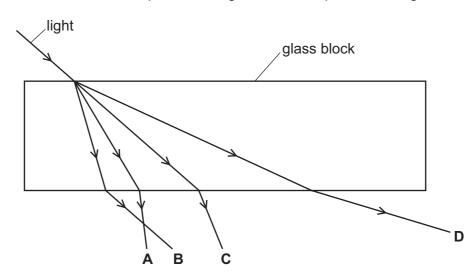


The heater is now switched on.

What are the main methods of transfer of thermal energy through the metal case of the heater, and throughout the water in the tank?


	through the metal case of the heater	throughout the water in the tank
Α	conduction	conduction
В	conduction	convection
С	convection	conduction
D	convection	convection

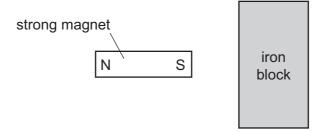
30 The diagram shows a water wave being diffracted.


Which diagram shows water waves of half the frequency being diffracted?

(All five diagrams are drawn to the same scale.)

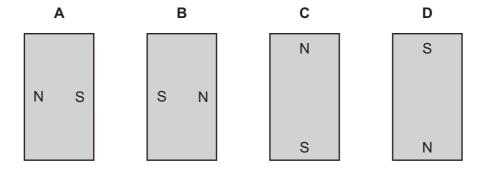
31 The diagram shows light incident on a glass block.

Which labelled arrow shows the path of the light after it has passed through the block?

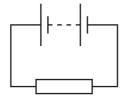


32 Light from the Sun takes 8.3 minutes to reach the Earth.

How far apart are the Sun and the Earth?


- **A** $6.0 \times 10^5 \,\mathrm{m}$
- $3.6 \times 10^{7} \, \text{m}$ В
- **C** $2.5 \times 10^9 \text{ m}$ **D** $1.5 \times 10^{11} \text{ m}$

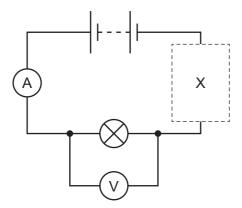
- 33 What is the approximate range of frequencies of sound that can be heard by the human ear?
 - **A** 2 Hz to 2000 Hz
 - **B** 2 kHz to 2000 kHz
 - C 20 Hz to 20 000 Hz
 - **D** 20 kHz to 20 000 kHz
- 34 A strong permanent magnet is placed close to an iron block, as shown in the diagram.



Magnetic poles are induced in the iron block.

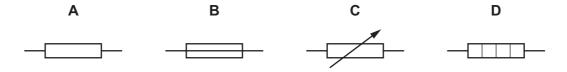
What is the arrangement of the induced poles?

35 The diagram shows a resistor connected to a battery.


The current in the circuit is 2.0 A.

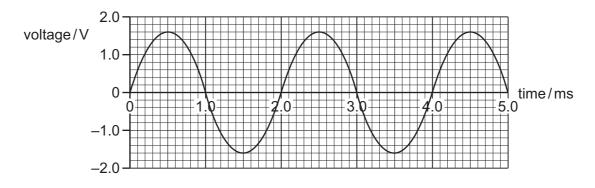
In 20 s, a total of 120 J of energy is transferred from the battery.

What is the electromotive force (e.m.f.) of the battery?


- **A** 1.5 V
- **B** 3.0 V
- **C** 6.0 V
- **D** 12 V

36 The diagram shows a circuit that can be used to investigate how the current in a lamp varies with the potential difference across it.

The current in the lamp needs to be varied.


Which component is connected in the circuit at position X?

37 Overheating of a cable in an electric circuit is a safety hazard.

How can overheating of the cable be prevented?

- **A** Do not switch off the circuit with damp hands.
- **B** Make sure that the current does not become too large.
- **C** Use thicker insulation on the cable.
- **D** Use a thinner cable.
- **38** The graph shows the variation with time of the voltage output of an a.c. generator.

What is the frequency of the a.c. voltage?

- **A** 0.50 Hz
- **B** 1.0 Hz
- **C** 500 Hz
- **D** 1000 Hz

39 The emissions from a radioactive source pass through a sheet of lead that is 10 mm thick.

Which type of radiation is emitted and how is it affected by an electric field?

	type of emission	effect of electric field
Α	α	deflected from positive to negative
В	α	no deflection
С	γ	deflected from positive to negative
D	γ	no deflection

40 A radioactive nucleus emits a β -particle.

What happens to the nucleus?

- **A** Its nucleon number decreases.
- **B** Its nucleon number stays the same.
- **C** Its proton number decreases.
- **D** Its proton number stays the same.

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	-	elium 4	10	e e	леоп 20	18	٩Ľ	argon 40	36	궃	ypton 84	54	×e	enon 131	98	占	adon –			
			_	<u>-</u>																		
	₹				6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	¥	astatine _			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>	-			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	B	bismuth 209			
	≥				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡	-			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
		-						I			30	Zu	zinc 65	48	ဗ	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
											29	D.	copper 64	47	Ag	silver 108	79	Αu	gold 197	111	Rg	roentgenium
dno											28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
Group											27	ပိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	₩	meitnerium -
		-	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium
					ı						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	В	dubnium –
						ato	rela				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	쪼	rutherfordium -
								•			21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_	-			8	:=	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium

71 Lu	lutetium 175	103	۲	lawrencium	I
70 Yb	ytterbium 173	102	8	nobelium	I
69 Tm	thulium 169	101	Md	mendelevium	I
88 Fr	erbium 167	100	Fm	ferminm	I
67 Ho	holmium 165	66	Es	einsteinium	I
° 6	dysprosium 163	86	Ç	californium	ı
65 Tb	terbium 159	97	ă	berkelium	ı
Gd Gd	gadolinium 157	96	Cm	curium	ı
63 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
e1 Pm	promethium -	93	dN	neptunium	I
。 9 P	neodymium 144	92	\supset	uranium	238
₅₉	praseodymium 141	91	Ра	protactinium	231
O 88	cerium 140	06	L	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).