Cambridge IGCSE ${ }^{\text {TM }}$

PHYSICAL SCIENCE

0652/41
Paper 4 Extended Theory
October/November 2022
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance

For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1 (a)(i)	$27 ;$	$\mathbf{1}$
1 (a)(ii)	$0 /$ zero ;	$\mathbf{1}$
1 (b)(i)	$1 / 2 \mathrm{mv}^{2}$ or $1 / 2 \times 84 \times 10^{-3} \times(\mathbf{a})\left(\right.$ (i) ${ }^{2} ;$	
	correct conversion of $84 \mathrm{~g}: 0.084 \mathrm{~kg}$ or 84×10^{-3} or 8.4×10^{-2} or division by $1000(\mathrm{~kg}) ;$ $30.6(18) / 31 ;$	$\mathbf{3}$
1 (b)(ii)	(converted to) thermal (energy) ;	

Question	Answer	Marks
2(a)(i)	diffusion ;	$\mathbf{1}$
2(a)(ii)	any one from in liquids: (particles) move slower (than in gases) ; (particles) are, less spread out/ closer together ; (particles) travel less far between collisions ;	$\mathbf{1}$
2(b)	158 ;	$\mathbf{1}$

Question	Answer	Marks
3(a)	solid is melting / changing from solid to liquid ;	$\mathbf{1}$
3(b)	similarity: change from liquid to gas ;	$\mathbf{1}$
	any two differences: boiling in all parts of the liquid / evaporation at the surface only ; boiling occurs at a single temperature / evaporation occurs over a range of temperatures ;	$\mathbf{2}$

Question	Answer	Marks
3(c)(i)	range: difference between maximum and minimum (temperatures the thermometer can measure) ;	$\mathbf{1}$
3(c)(ii)	sensitivity: measure of expansion per unit change of temperature ;	$\mathbf{1}$

Question	Answer	Marks
$4(\mathrm{a})$	green AND yellow circled ;	$\mathbf{1}$
$4(\mathrm{~b})$	correct R_{f} calculation or formula in words or numbers / distance to spot \div distance to solvent front $/ 6.4 \div 12 ;$ $0.53 ;$	$\mathbf{2}$
$4(\mathrm{c})$	any one from in crystallisation: (only) removes the water or liquid or solvent final product is all solid $/$ all crystals / mixture of solids ;	$\mathbf{1}$

Question	Answer	Marks
5(a)(i)	any two from: same general formula; contain $\mathrm{C}=\mathrm{C} /$ (carbon to carbon) double bond ; similar chemical properties / named similar chemical property ; same homologous series ; both hydrocarbons ;	2
5(a)(ii)	alkene ;	1
5(a)(iii)	carbon (carbon) double bond / $\mathrm{C}=\mathrm{C}$;	1

Question		Answer	Marks
5(b)(i)	carbon chain correct: C-C ; rest of molecule correct ;		2
5(b)(ii)	addition ;		1

Question	Answer	Marks
$6(\mathrm{a})$	clear single change of direction of the wavefronts with straight wavefronts (in shallow water); direction of refraction correct ; three straight wavefronts with wavelengths in shallow water equal to each other and less than wavelength in deeper water ;	
$6(\mathrm{~b})$	$v=f \lambda$ or $(\mathrm{f}=) v \div \lambda$ or $(f=) 24 \div 5.0 ;$ $4.8 ;$ $\mathrm{Hz} ;$	$\mathbf{3}$
$6(\mathrm{c})$	speed in deep water \div speed in shallow water $/ 24 \div 18 ;$ $1.3 ;$	$\mathbf{2}$

Question	Answer	Marks
7 (a)(i)	power or $\mathrm{P}=V I$ or $(I=) \mathrm{P} \div \mathrm{V}$ or $0.45 \div 0.50 ;$ $0.9(0) ;$	$\mathbf{2}$
7 (a)(ii)	$(Q=) I t$ or (i) $\times 5 \times 60 ;$ $270 ;$	$\mathbf{2}$
7 (a)(iii)	(ntc) thermistor ;	$\mathbf{1}$
7 (a)(iv)	$8.5 ;$	$\mathbf{1}$
7 (b)	decreased resistance ; decreased potential difference across Y or thermistor (in the circuit) $O R$ increased potential difference across lamp (and R) increased current (in circuit/lamp) ;	$\mathbf{3}$

Question	Answer	Marks
8(a)(i)	Mr determination: Mr PbS = 239 and $\mathrm{Mr} \mathrm{PbO}=223$; ratio: 1:1 mole ratio / 239 g of PbS gives 223 g of PbO ; mass of PbO : (239 g produces $7 \times 223(\mathrm{PbO}) \div 239(\mathrm{PbS})$ ecf on mole ratio gives) 6.5(31);	3
8(a)(ii)	acid rain ;	1
8(a)(iii)	low sulfur fuel ; flue gas desulfurisation ;	2
8(b)	(lead or Pb in) $\mathrm{PbO} /$ lead oxide ;	1
8(c)	improve the properties (of the pure metal) ;	1

Question	Answer	Marks
8(d)(i)	any three from: more reactive metal / metal higher in reactivity series / zinc / magnesium (used with or attached to iron) ; iron becomes, negative (terminal) / the cathode ; (attached metal) donates its electrons / iron gains electrons ; (attached metal) is oxidised (instead of iron) ;	$\mathbf{3}$
8(d)(ii)	paint / coat ;	$\mathbf{1}$

Question	Answer	Marks
$9(\mathrm{a})$ (i)	(nuclides with the) same, number of protons / proton number / atomic number / atoms of the same element ; different, numbers of neutrons / neutron number / nucleon number / mass number ;	$\mathbf{2}$
9 (a)(ii)	neutron = 8 AND protons $=6 ;$	$\mathbf{1}$
$9(\mathrm{~b})$	top line: 14 AND 0 ; lower line: 7 AND $-1 ;$	$\mathbf{2}$

Question	Answer	Marks
$10(\mathrm{a})(\mathrm{i})$	do not react / do not take part in the (electrolytic) reactions;	$\mathbf{1}$
10 (a)(ii)	positive electrode: chlorine (gas) $/ \mathrm{Cl}_{2} ;$ negative electrode: calcium / Ca ;	$\mathbf{2}$
$10(\mathrm{~b})$	chloride with 8 electrons ; calcium with no electrons or 8 electrons ; 2+ charge on one calcium and 1- charge on two chloride ;	$\mathbf{3}$
10 (c)	Be reacts slower ; Be is above Mg (in Group) ; reactivity increases down Group II ;	$\mathbf{3}$
$11(\mathrm{a})$	region in which a (stationary) charge experiences a force;	$\mathbf{1}$

Question	Answer	Marks
11 (b)(i)	deflects downwards with a smooth curve ;	$\mathbf{1}$
11 (b)(ii)	deflects in the opposite direction (to the α-particle) ; deflects more (than the α-particle) ;	$\mathbf{2}$
11 (c)(i)	fire alarm circuits / AVP ;	$\mathbf{1}$
11 (c)(ii)	high ionising effect/low penetration ability ;	$\mathbf{1}$

Question	Answer	Marks
$12(a)$	(thermal) decomposition;	$\mathbf{1}$
$12(b)$	gains / accepts, a proton ;	$\mathbf{1}$
$12(c)$	reactants (calcium carbonate) on left and products (calcium oxide + carbon dioxide) on right ; correct shape ; energy change shown with arrow ;	$\mathbf{3}$

