

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

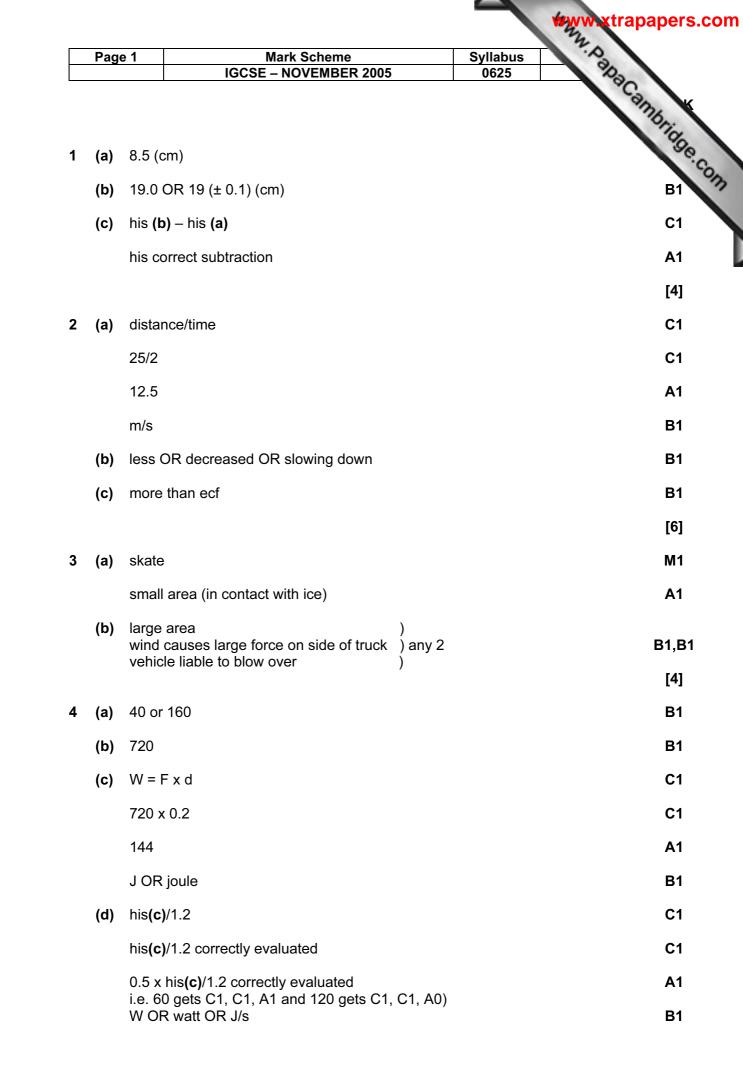
0625 PHYSICS

Wany, Papa Cambridge, com

0625/02 Paper 2 (Theory)

Maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.


All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	∋ 2	Mark Scheme Syllabus	
			IGCSE – NOVEMBER 2005 0625	°C
5	(a)	level	ambride	
	(b)		as expanded (could be scored in (a) , but not twice) Kinetic Theory application to pressure	acambridge.
	(c)	any s e.g.	sensible comment	B1
6	(a)	(i)	current (in coil)	[3] B1
			magnetic field (around coil)	B1
		(ii)	magnetised OR attract	B1
	(b)	curre	ent zero at first (even if only at origin)	B1
		horiz	zontal first part	B1
		vertic	cal rise somewhere	B1
		horiz	B1	
				[7]
7	(a)	three	e rays parallel and horizontal	B1
	(b)	(i)	both principal foci marked	B1
		(ii)	refraction at mid-line, then through F (allow 2 surface refractions if lead back to mid-line)	B1
		(iii)	ray through F to mid-line, then parallel (allow as (ii))	B1
		(iv)	image drawn between axis and intersection, perpendicular to axisC (condone no labelling)	B1
			B1	
				[6]
8	(a)	(i)	iron OR steel OR any ferromagnetic material (B0 if magnetised stated)	B1
		(ii)	 nothing ecf from (i) nothing 	B1 B1
	(b)	ГН	B1	
			compass pointing to R	

Page 3			Mark Scheme	Syllabus	S.	
				IGCSE – NOVEMBER 2005	0625	1000
		botto	om comp	pass pointing to L		www.xtrapapers.
)	(a)	1 co	ae'c			
		2 co	C1			
		4 co	rrect			A1
	(b)	(i)	B1			
		(ii)	voltme	ter connected across cell, either ou	r diag or his	B1
		(iii)	both			B1
		(iv)	0.5			B1
		(v)	curren	t stops OR ammeters read zero OR	other bulb goes ou	ut B1
						[8]
10	(a)	10 x	C1			
		260	A1			
	(b)	D =	C1			
		250/	his V	C1		
		0.96	1538	any no. of sig figs ecf		C1
		0.96	A1			
		g/cm	B1			
						[7]

	Page 4		Mark Scheme	Syllabus	2
			IGCSE – NOVEMBER 2005	0625	1220
1	(a)	elect	trons		Marcanthidge.co
	(b)	А			age.
	(c)	(i)	D		B
		(ii)	idea of detecting electrons/making spot visi	ble	B1
	(d)	defle	ects them		B1
	(e)	no ai	ir OR no molecules OR no particles OR "noth	ning"	B1
		to sto	op/slow down/absorb the electrons/cathode r	ays	B1
					[7]
2	(a)	(i)	time taken for (B0 for half the time)		B1
			activity/count-rate/mass etc.		B1
			to decrease to half original value		B1
		(ii)	radiation due to surroundings		B1
	(b)	(i)	80 – 25		C1
			55 cao		A1
		(ii)	1. 27.5 ecf		B1
			2. 52.5 ecf		B1
		(iii)	15 ± 1 ecf		B1
		(iv)	background remains, even when source ha	s decayed	B1
		(v)	curve to the left of existing one		B1
			flattening out at 25 count/min		B1
					[12]