www.xtrapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0625 PHYSICS

0625/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	.0	ľ
	IGCSE – May/June 2012	0625	800	

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

M marks

are method marks upon which further marks depend. For an M mark to be scored point to which it refers must be seen in a candidate's answer. If a candidate fails to so a particular M mark, then none of the dependent marks can be scored.

B marks

are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

A marks

In general A marks are awarded for final answers to numerical questions.

If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded.

It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. However, correct numerical answers with no working shown gain all the marks available.

C marks

are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.

brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

underlining indicates that this must be seen in the answer offered, or something very similar.

OR / or indicates alternative answers, any one of which is satisfactory for scoring the marks.

means "each error or omission". e.e.o.o.

means "or words to that effect". o.w.t.t.e.

Spelling

Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, beware of and do not allow ambiguities, accidental or deliberate; e.g. spelling which suggests confusion between reflection / refraction / diffraction / thermistor / transistor / transformer.

Not/NOT

Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Ignore

Indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

www.xtrapapers.con

Page 3	Mark Scheme: Teachers' version	Syllabus	· Sa	ľ
	IGCSE – May/June 2012	0625	200	

ecf

meaning "error carried forward" is mainly applicable to numerical questions, particular circumstances be applied in non-numerical questions.

This indicates that if a candidate has made an earlier mistake and has carrie incorrect value forward to subsequent stages of working, marks indicated by ecf may awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated ecf.

Significant Figures

Answers are normally acceptable to any number of significant figures \geq 2. Accept answers that round to give the correct answer to 2 s.f. Any exceptions to this general rule will be specified in the mark scheme.

Units

Deduct one mark for each incorrect or missing unit from a final answer that would otherwise gain all the marks available for that answer: maximum 1 per question.

Arithmetic errors

Deduct one mark if the **only** error in arriving at a final answer is clearly an arithmetic one.

Transcription errors

Deduct one mark if the only error in arriving at a final answer is because given or previously calculated data has clearly been misread but used correctly.

Fractions e.g. $\frac{1}{2}$, $\frac{1}{10}$ etc are only acceptable where specified.

www.xtrapapers.com

[3]

[Total: 6]

hor acc	cons spec shap 25 m	Mark Scheme: Teachers' version IGCSE – May/June 2012 tant/steady/uniform speed/velocity OR speed/velocity d/velocity = 2.5 m/s accept fraction, average speed/velocity upward but not to vertical, at least to all (straight) line OR careful sketch arallel to time/x-axis	/velocity = 2.5 m/s	B1	Middle
(ii)	spee shap 25 m rizonta cept pa	ed/velocity = 2.5 m/s accept fraction, average speed/ be curving upward but not to vertical, at least to al (straight) line OR careful sketch	ity = 2.5 (m/s) /velocity = 2.5 m/s 3.5 s unless reaches	B1	
hor acc	25 m rizonta cept pa	ıl (straight) line OR careful sketch	3.5s unless reaches	B1	
tole	ept pa	` ,		B1	
	erance				[1]
		on both axes ± ½ small square throughout both pa	ırts		
(i)	horiz	ontal straight line at 2.5 m/s from 0 to 2 s, ecf from (a	a)(i)	B1	
(ii)		ght line rising to the right as far as the edge of the g 4 m/s or gradient clearly 2 m/s ²	graph area	M1 A1	[3]
at 0	m/s cept fo		th <i>y</i> / <i>v</i> = 0 OR careful	M1 A1	[2]
				[Tota	l: 9]
OR	any	correct moment equation with force or mass but not	mixture	C1 A1	[2]
211	N ecf	rom (a)		B1	[1]
(i)	stays	in position		B1	
(ii)	clcene	ockwise moment = anticlockwise moment entre of mass at pivot o (resultant) moment/turning force acting on sculptu	ıre	B1 B1	
	ma OR = 0	at 0 m/s accept fo sketch mass = (' OR any c = 0.6(0) k 21 N ecf f (i) stays (ii) any to • clo • ce • no	accept for both marks: line in/along time/x-axis OR line wit sketch mass = (1.5 × 10 × 12)/(30 × 10) OR = (1.5 × 12)/30 OR any correct moment equation with force or mass but not = 0.6(0) kg 21 N ecf from (a) (i) stays in position (ii) any two from: • clockwise moment = anticlockwise moment • centre of mass at pivot	at 0 m/s accept for both marks: line in/along time/x-axis OR line with y/v = 0 OR careful sketch mass = (1.5 × 10 × 12)/(30 × 10) OR = (1.5 × 12)/30 OR any correct moment equation with force or mass but not mixture = 0.6(0) kg 21 N ecf from (a) (i) stays in position (ii) any two from: • clockwise moment = anticlockwise moment • centre of mass at pivot • no (resultant) moment/turning force acting on sculpture	at 0 m/s accept for both marks: line in/along time/x-axis OR line with y/v = 0 OR careful sketch [Total mass = (1.5 × 10 × 12)/(30 × 10) OR = (1.5 × 12)/30 OR any correct moment equation with force or mass but not mixture

relative distances from pivot unchanged

В1

В1

[Total: 9]

[2]

Page 5	Mark Scheme: Teachers' version	Syllabus	.0	
	IGCSE – May/June 2012	0625	700	

3	(a)	use	ass flow rate =) 1030 (kg/s) e of <i>mgh</i> s of GPE = 1030 × 10 × 3 = 30 900 J or Nm ecf from 1st line	A1	bridge
	(b)	effi	put power = (26 × 400 =) 10 400 (W) ciency = output (power)/input (power) with/without 100 = output/input with/without 100 OR any numbers	C1	•
		tha effi	t clearly show relationship the correct way up is intended ciency = (100 × 10 400/30 900 =) 33.7% at least 2 s.f. ow ecf from (a) and 1st line of (b)	C1 A1	[3]
	(c)	(i)	from basin/to sea/from right/to left	B1	
		(ii)	turbine design allows rotation in both directions OR meaningful comment on change of pitch		
			OR generator works when rotating in either direction	B1	[2]
				[Tota	l: 8]
4	(a)	(i)	50°	B1	
		(ii)	total internal (reflection)	B1	[2]
	(b)	OR <i>i</i> =	e of $\underline{\sin} i \underline{\sin} r = n$ OR $1/n$ in any form $1/\underline{\sin} c = n$ OR $1/n$ 40(°) and $r = 90$ (°) OR vice versa ecf if measured from interface not normal (1/ $\sin i = 1/0.643 = 1.556$) 1.556 ecf from previous line	C1 C1 A1	[3]
	(c)		ected ray drawn in same position as original reflected ray < angle of refracted ray from surface < 13°	B1 B1	[2]

(d) prism drawn in correct orientation to give t.i.r. correct reflection of rays

[Total: 5]

	Pa	ge 6		Mark Scheme: Teachers' version	Syllabus	1		
				IGCSE – May/June 2012	0625	SO.		
5	(a)	(i)	CD		•	Da Cam	16.	
		(ii) any 3 points from						
		 in Q distances travelled (by waves) shorter/wavelength less wave spreads in region Q from B 						
		•	a	Il points on wavefront AB move to (corresponding) p				
		•		n same time that/while end A of wavefront AB menoves to D	ove to C and end B		[4]	
	(b)	_		P and Q same depth/regions P and Q (now) one me		В1		
				rvelength/wavefronts travel same speed/distance in efraction/change of direction OR no bending of wave		B1	[2]	
						[Tota	ii: 6]	
6	(a)	T-sh	irt in	wind/on L dries quicker OR T-shirt out of wind/on R	? dries slower	M1		
	(u)	wind	l rem	noves more evaporated molecules accept quicker	and diewei			
		NOI	win	d gives water molecules more KE		A1	[2]	
	(h)	T-sh	irt fo	olded double/on R dries slower OR T-shirt unfolded/o	on L dries quicker	M1		
	(6)	corre	ect re	eference to smaller/larger surface area for molecule	•			
		OR \	wate	r trapped (in fold) OR more humid in fold		A1	[2]	
	(c)	wate	ar Av	aporates from her hair		B1		
	(0)	heat	req	uired for evaporation OR heat flows (from body/h	air) to warm up cold	D1		
		wate OR f		r molecules escape leaving water cooler/lowering K	Έ			
				nere is a cooling effect		B1	[2]	
						[Tota	l: 6]	
7	(a)			e negatives in left than right hly same no. of positives as negatives		B1 B1	[2]	
							[2]	
		(ii)	clea	rly more negatives than positives, anywhere on sph	ere	B1	[1]	
	/ L \	/:\ ·	otro:	abt lines, radial towards point, arraws inwards		D4		
	(b)	.,	_	ght lines, radial towards point, arrows inwards		B1		
		(ii)	direc	ction of field OR <u>direction</u> of force on (point) <u>positive</u>	(charge)	B1	[2]	

www.xtrapapers.cor

			The state of the s	vixtrapa	apers			
	Page	7	Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2012 0625	Page.				
8	(a) (i)	Page 7 Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2012 0625 (a) (i) (milliammeter) deflects/shows reading/current OR reading changes OR the is a current change of flux/field (lines) cut OR emf/current induced/produced						
	(ii)	rate	ater deflection/current of change of flux (linkage) is greater o.w.t.t.e more magnetic field lines cutting coil (per second) OR field cut faster	B1 B1	[2]			
	(b) (i)	upw	vards/opposite to magnet's direction of travel ignore towards magnet	B1				
	(ii)		rent (in coil) causes a magnetic field e caused by overlapping (magnetic) fields	B1 B1	[3]			
				[Tota	ıl: 7]			
9	(a) (i)		I $R = 320 (\Omega)$ or V per lamp = 6 (V) (240/320 or 6/8 =) 0.75 A ecf from previous line	C1 A1	[2]			
	(ii)) use 4.5\	of $P = VI$ OR I^2R OR V^2/R W ecf from (a)(i)	C1 A1	[2]			
	tot no ma	tal <i>R</i> = o. of lar ax. no.	ce of each lamp = $8 \times 1.05 = 8.4 (\Omega)$ = $240/0.9 = 266.7 (\Omega)$ OR V per lamp = $8.4 \times 0.9 = 7.56$ (V) mps (= $266.7/8.4$) = 31.7 OR (= $240/7.56$) = 31.7 . of failed lamps = 8 everse logic	B1 B1 B1 B1	[4]			
				[Tota	ւl: 8]			

10 for (b) and (d) accept HIGH/LOW or ON/OFF

(a) NOR	B1	[1]

(b) outputs 1, 0, 0, 0 lose 1 mark e.e.o.o. B2 [2]

(c) (i) OR and NOT gates either order B1

(ii) both symbols correct B1
OR then NOT, connected B1 [3]

(d) logic level at Y, 0 B1 logic level at Z, opposite to candidate's answer to Y B1 [2]

[Total: 8]

www.xtrapapers.com

Page 8	Mark Scheme: Teachers' version	Syllabus	· 2
	IGCSE – May/June 2012	0625	23-

11 (a) any mention background background/radiation varies randomly o.w.t.t.e. OR rate of decay very small OR sample nearly all decayed

(b) correctly deducts correct background (13 – 15 /s)
 b takes 2 detector readings, one twice the other
 correct working, with/without background subtraction, i.e. use of graph
 half life = 1.2 – 1.8 days OR follows from working
 B1
 [4]

(c) α (very) short range in air OR will not reach researcher NOT will not penetrate skin B1 γ long range/very penetrating/heavy shielding needed OR will reach researcher B1 [2]

[Total: 8]